
Reclustering for Large Plasticity in Clustered Shape Matching
Michael Falkenstein

University of Maryland, Baltimore
County

Ben Jones
University of Utah

Joshua A. Levine
University of Arizona

Tamar Shinar
University of California, Riverside

Adam W. Bargteil
University of Maryland, Baltimore

County

ABSTRACT
In this paper, we revisit the problem online reclustering in clus-
tered shape matching simulations and propose an approach that
employs two nonlinear optimizations to create new clusters. The
first optimization finds the embedding of particles and clusters into
three-dimensional space that minimizes elastic energy. The second
finds the optimal location for the new cluster, working in this em-
bedded space. The result is an approach that is more robust in the
presence of elastic deformation. We also experimentally verify that
our clustered shape matching approach converges as the number
of clusters increases, suggesting that our reclustering approach
does not change the underlying material properties. Further, we
demonstrate that particle resampling is not strictly necessary in
our framework allowing us to trivially conserve volume. Finally,
we highlight an error in estimating rotations in the original shape-
matching work [Müller et al. 2005] that has been repeated in much
of the follow up work.

CCS CONCEPTS
•Computingmethodologies→ Simulation by animation;Phys-
ical simulation;

KEYWORDS
Shape Matching, Clustering, Plasticity

ACM Reference Format:
Michael Falkenstein, Ben Jones, Joshua A. Levine, Tamar Shinar, and Adam
W. Bargteil. 2017. Reclustering for Large Plasticity in Clustered ShapeMatch-
ing. In Proceedings of MiG ’17, Barcelona, Spain, November 8–10, 2017, 6 pages.
https://doi.org/10.1145/3136457.3136473

1 INTRODUCTION
Shape matching is a geometrically motivated technique for ani-
mating deformable bodies introduced a decade ago by Müller and
colleagues [2005]. Figure 1 summarizes the approach. The basic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MiG ’17, November 8–10, 2017, Barcelona, Spain
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5541-4/17/11. . . $15.00
https://doi.org/10.1145/3136457.3136473

approach samples a deformable object with particles, which deter-
mine the degrees of freedom in the object. Each timestep, a best-fit
rigid transformation of the rest shape of the object to the current
configuration of particles is computed and Hookean springs are
used to pull the particles toward the rigidly transformed shape.
A powerful extension to this basic approach, also introduced by
Müller and colleagues [2005], is to break the object into several
overlapping clusters. We refer to this approach as clustered shape
matching. Having more than one cluster imbues the object with a
richer space of deformation, while overlap keeps the object from
falling apart. While this approach lacks a well-developed mathe-
matical underpinning, it has a number of advantages that make it
especially well-suited to interactive graphics applications, such as
video games.

Recently, Chentanez and colleagues [2016] extended basic clus-
tered shape matching with the ability to dynamically add and re-
move clusters and particles. These extensions allow them to handle
extremely large plastic deformations that otherwise cause previous
approaches [Jones et al. 2016] to fail. In this paper, we revisit this
problem and propose an alternative approach to reclustering that
employs two nonlinear optimizations to create new clusters. The
first optimization finds the embedding of particles and clusters into
three-dimensional space that minimizes elastic energy. The sec-
ond finds the optimal location for the new cluster, working in this
embedded space. The result is an approach that is more robust in
the presence of elastic deformation. We also experimentally verify
that our approach converges as the number of clusters increases,
suggesting that our reclustering approach does not change the un-
derlying material properties. Further, we demonstrate that particle
resampling is not strictly necessary in our framework allowing
us to trivially conserve volume. Finally, we highlight an error in
estimating rotations in the original shape-matching work [Müller
et al. 2005] that has been repeated in much of the follow up work.

2 BACKGROUND
In this section we first review related work and then provide a brief
overview of the clustered shape matching approach before detailing
our reclustering approach in Section 3.

2.1 Related Work
The geometrically motivated shape matching approach was in-
troduced by Müller and colleagues [2005], who demonstrated im-
pressive results and described the key advantages of the approach:
efficiency, stability, and controllability. Given these advantages,

https://doi.org/10.1145/3136457.3136473
https://doi.org/10.1145/3136457.3136473

MiG ’17, November 8–10, 2017, Barcelona, Spain M. Falkenstein et al.

Figure 1: Shape Matching Overview: (a) An object (here, a square) is sampled with particles, pi , to get rest positions, ri . (b) As particles are
subjected to external forces and constraints, their positions, xi , are updated in world space. (c) The best-fitting rigid transformation of the particles’
rest positions, ri , to their world positions, xi , is computed. The dotted red circles are the goal positions, gi . (d) Hookean springs pull the world
positions toward the goal positions.

shape matching is especially appealing in interactive animation
contexts such as video games. The authors also introduced several
extensions including linear and quadratic deformations (in addition
to rigid deformations), cluster-based deformation, and plasticity.

Two years later, Rivers and James [2007] introduced lattice-based
shape matching, which used a set of hierarchical lattices to define
the shape matching clusters. They took advantage of the regular
structure of the lattices to achieve extremely high performance.
The following year Steinemann [2008] adapted the lattice based
approach to octrees enabling spatial adaptivity. In order to improve
stability for non-volumetric objects (i.e. shells and strands) and to
simplify sampling, Müller and Chentanez extended shape matching
to track particle orientation [Müller and Chentanez 2011]. This ap-
proach proved to be useful for animating clothing and hair attached
to animated characters [Müller and Chentanez 2011].

More recently, Bargteil and Jones [2014] incorporated strain-
limiting into clustered shape matching. In follow-up work, Jones
and colleagues [2015] explored improved clustering strategies and
introduced simple collision proxies for the clusters. Jones and col-
leagues [2016] later introduced a plasticity model and approach to
fracture enabling ductile fracture in the clustered shape matching
framework.

Other popular approaches to real-time animation of deformable
solids include position-based dynamics [Bender et al. 2014; Kelager
et al. 2010; Macklin et al. 2014; Müller et al. 2007], frame-based
models [Faure et al. 2011; Gilles et al. 2011], and projective dy-
namics [Bouaziz et al. 2014; Liu et al. 2013]. While plasticity and
fracture have been demonstrated for position-based dynamics, such
phenomena invalidate the precomputations that make frame-based
models and projective dynamics computationally efficient. As ar-
gued by Bargteil and Jones [2014], the shape matching framework
has some advantages over position-based dynamics; in particular
better adherence to Newton’s first and second laws of motion.

2.2 Clustered Shape Matching
For completeness and readability, we first briefly review the shape
matching approach of Müller and colleagues [2005] and the exten-
sions of Bargteil, Jones, and colleagues [2014; 2015; 2016] before
introducing our plasticity and fracture models. Finally we briefly
discuss our approaches to sampling and clustering.

2.3 Shape Matching
In the shape matching framework objects are discretized into a set
of particles, pi ∈ P, with masses,mi , and rest positions, ri , that
follow a path, xi (t), in world-space through time. Shape matching
takes its name from the fact that, each frame, we match the rest
shape to the deformed shape by finding the least-squares best-fit
rigid transformation from the rest pose to the current deformed
pose by solving for the rotation matrix, R, and translation vector,
x̄ − r̄, that minimizes∑

i
mi ∥R (ri − r̄) − (xi − x̄) ∥2. (1)

The best translation is given by the center-of-mass in the rest (r̄) and
world (x̄) space. Computing the rotation, R, is more involved. We
first compute the least-squares best-fit linear deformation gradient,
F. Specifically, we seek the F that minimizes∑

i
mi ∥F (ri − r̄) − (xi − x̄) ∥2. (2)

Setting the derivative with respect to F to 0 and re-arranging terms
we arrive at

F = *
,

∑
i
miO(xi , ri)+

-
*
,

∑
i
miO(ri , ri)+

-

−1

= AxrA−1
r r , (3)

where O(·, ·) is the outer product matrix

O(ai , bi) = (ai − ā)
(
bi − b̄

)T
, (4)

and A∗∗ is a convenient shorthand. We then compute R using the
polar decomposition,

F = RS =
(
UVT

) (
VΣVT

)
(5)

Reclustering for Large Plasticity in Clustered Shape Matching MiG ’17, November 8–10, 2017, Barcelona, Spain

where S = VΣVT is a symmetric matrix and UΣVT is the sin-
gular value decomposition (SVD) of F. While several researchers
(e.g. [Rivers and James 2007]) have pointed out that polar decompo-
sitions can be computed faster than the SVD, especially when warm
started, we use the SVD for its robustness and for our plasticity
model (see Section 2.3.1).

Given R and x̄ − r̄, we define goal positions, gi , as

gi = R (ri − r̄) + x̄. (6)

Hookean springs are then used to define forces that move the
particles toward the goal positions.

2.3.1 Clustered Shape Matching. Breaking an object into multi-
ple overlapping clusters allows for richer and more localized defor-
mations. Fortunately, handling multiple clusters is straightforward.
When computing a particle’s contribution to cluster quantities, we
divide the particle’s mass among the clusters to which it belongs.
For a particle pi in cluster c ∈ C we introduce a weight wic that
describes how much of pi ’s mass is contributed to cluster c and
replacemi with wicmi in equations (1)-(3) and when computing
cluster mass and center-of-mass. Specifically, if particle pi belongs
to ni clusters, then the center-of-mass of cluster c , x̄c , is

x̄c =
∑
pi ∈Pc (wicmi) xi∑
pi ∈Pc (wicmi)

, (7)

where Pc is the set of particles in cluster c . Furthermore, when com-
puting the goal position, gi , for a particle we perform a weighted
average of the goal positions given by each cluster to which it
belongs. That is,

gi =
∑
c

wic gic , (8)

where gic is the goal position for particle pi in cluster c .

Clustering. We use the clustering method of Jones and colleagues
[2015]. This method is a variation of the fuzzy c-means algorithm
and produces overlapping clusters where each particle may belong
to several clusters to varying degrees. As in the popular k-means
clustering algorithm, this algorithm alternates between updating
cluster membership and updating cluster centers. However, updat-
ing membership involves updating weights,wic , and cluster centers
are the weighted center-of-mass of members. Please see Jones and
colleagues [2015] for more details including analysis of different
weighting functions, varying cluster size, degree of overlap, etc.

Strain Limiting. Tomaintain stability we adopt the strain limiting
approach advocated by Bargteil and Jones [2014]. However, in the
presence of plastic deformation (see Section 2.3.1) we typically
increase the maximum allowed stretch (γ in their paper) to avoid
instabilities when clusters disagree about the current rest shape.

Collision Handling. We use the approach of Jones and colleagues
[2015] for handling collisions. Their approach uses spheres inter-
sected with half-spaces as collision proxies for clusters, which is
very well-suited to our fracture approach that divides clusters with
planes.

Sampling Geometry. The distribution of particles that model an
object affects the resulting simulation. We experimented with both
grid-based and blue noise sampling and preferred the results from
blue noise over the highly structured grid-based sampling. Our

blue noise sampler is based on Bridson’s fast Poisson disk sam-
pling [Bridson 2007]. In both cases, for an object whose boundary
is an arbitrary manifold, we simply sample particles within the
bounding box of the object and discard particles outside the sur-
face.

Plasticity. Our approach to plastic deformation adapts the model
of Bargteil and colleagues [2007] to the clustered shape matching
framework. To accommodate plastic deformation we store and
update an additional matrix, Fpc , for each cluster, c . For readability
we drop the subscript, but the following is computed for each cluster.
We then compute the elastic part of the deformation gradient

Fe = F
(
Fp

)−1
, (9)

where F is given by Equation (3). We then decompose Fe as in Equa-
tion (5).

Fp is initialized to the identity, I. Then each timestep we compute
the volume preserving part of the diagonalized Fe ,

F∗ = det(Σe)−1/3Σe . (10)

We then compare
∥F∗ − I∥F (11)

to a plastic yield threshold, λ, where ∥ · ∥F is the Frobenius norm.
If the threshold is not exceeded, Fp remains unchanged. Otherwise,
we update Fp by

Fpnew =
(
F∗

)γ VFpold , (12)
where V is the matrix of right singular vectors in Equation (5) and
γ is given by

γ = min
(
ν ∗ ∥F∗ − I∥F − λ − Kα

∥F∗ − I∥F
, 1

)
, (13)

whereν andK are user-given flow rate andwork hardening/softening
constants, respectively, and α is a measure of cumulative stress that
is initialized to zero and then updated by

α̇ = ∥Fe − I∥F . (14)

We do not apply additional left-hand rotations when computing
Fpnew as thesewould be discarded during the decomposition in Equa-
tion (5).

We note that, in the presence of plasticity, the optimal rotation
R should be found by taking the polar decomposition of the elastic
part of the deformation gradient,

Fe = AxrA−1
r r

(
Fp

)−1
(15)

and that when computing goal positions we must account for the
plastic deformation

gi = RFp (ri − r̄) + x̄. (16)

Regrettably, these details were omitted by Jones and colleagues [2016].

3 METHODS
3.1 The Best Rotation
We begin by explicitly highlighting an error in early shapematching
work. Mueller and colleagues [2005] mistakenly stated that because
Ar r is symmetric it does not affect the rotation, R, which leads them
to compute the rotation from Axr , ignoring Ar r . This produces the
same rotation as the polar decomposition of F if Ar r is diagonal or

MiG ’17, November 8–10, 2017, Barcelona, Spain M. Falkenstein et al.

F has a condition number of 1. However, if Ar r is not diagonal and
F includes a non-uniform scale, the polar decompositions of Axr
and F result in different rotations.

To make this clear we consider a concrete example. For Ar r to
be non-diagonal, we have to have some asymmetry of our shape
with respect to the reference coordinate system. So we consider a
two-dimensional rectangle aligned with the x = y axis. Specifically
we sample the four corners: (1, 3), (3, 1), (−1,−3), and (−3,−1). The
basis matrix is then

A−1
r r =

(
20 12
12 20

)−1
=

1
64

(
5 −3
−3 5

)
. (17)

If we stretch our rectangle by a factor of 2 in the x dimension, then

Axr =

(
40 24
12 20

)
, (18)

which is not symmetric. The polar decomposition of Axr yields

R =
(
.9806 −.19611
.19611 .9806

)−1
, (19)

when in fact the transformation contained no rotation.

F = AxrA−1
r r =

(
2 0
0 1

)
, (20)

recovers the transformation. This error has persisted in the shape
matching literature [Choi 2014; Müller and Chentanez 2011; Rivers
and James 2007; Steinemann et al. 2008]. In practice, the error is
probably not very significant. After all artists generally align sym-
metries of their models with the coordinate axes resulting in Ar r
matrices that are nearly diagonaland the object in our example
is going to begin rotating as it undoes the deformation anyway.
Indeed, in our experiments we were unable to produce an example
where the incorrect rotation produced visually implausible results.
More significantly, the assumption that the polar decomposition
of Axr yields the optimal rigid rotation is the motivation for the
elaborate plasticity model developed by Choi [2014] and adopted by
Chentanez and colleagues [2016]. Consequently we adopt the sim-
pler plasticity model of Jones and colleagues [2016], which is based
on the correct rotation. As noted above, in the presence of plasticity,
the optimal rotation is computed from the polar decomposition of
Fe .

3.2 Reclustering
When an object undergoes plastic deformation its rest state will in
general no longer be embeddable in three-dimensional space. While
for modest plastic deformations this fact can be encoded by storing
per-cluster plastic offsets (Fp), under large plastic deformations it no
longer makes sense to store rest positions of particles. Instead, for
each cluster we store the relative position of each member particle
to the cluster center, that is pic replaces ri − r̄ throughout. Note that
while pic may change to account for shifting cluster membership,
it does not account for plastic deformation that occurs over the
lifetime of a cluster and we are still required to store Fpc for each
cluster c . This modification saves computation time but does require
additional storage. Another view is that the rest center-of-mass
of each cluster is at the origin. Chentanez and colleagues [2016]
adopted the same storage.

3.2.1 Cluster Removal. We remove clusters when the condition
number of their Fp matrix reaches a threshold indicating that the
rest state of the cluster has become significantly distorted. This trig-
ger is similar to the approach of Bargteil and colleagues [2007] who
globally remeshed whenever an individual tetrahedron’s condition
number exceeded a threshold, but diverges from the approach of
Chentanez and colleagues [2016] who used the Frobenius norm of
Fp or particle membership statistics to trigger cluster removal. The
Frobenius norm measures the absolute magnitude of Fp , which is
quite limited because, to preserve volume, det Fp = 1. In contrast,
the condition number measures the relative squash and stretch
induced on the rest space by Fp , making it a more appropriate
measure of the cluster’s condition. Moreover, because we must
invert Fp , numerical problems will arise as Fp becomes singular.
By removing clusters when the condition number of Fp is large, we
avoid singular matrices.

Once a cluster is marked for removal it gradually fades out over
a user-specified number of timesteps by gradually reducing the
weightswic . The mass of particles that were members of the clus-
ter is gradually redistributed to other clusters as the denominator
in Equation (2) gradually decreases. Changing weights shifts clus-
ter centers, which requires updating relative positions of cluster
members to keep the center of mass at the origin.

3.2.2 Cluster Addition. When adding clusters, we iterate over
the particles. Any particle that soon will not be a member of any
cluster (i.e. all its clusters are marked for removal) is chosen as a
seed location for a new cluster. We then perform a local embedding
of the rest space into an embedded space and then optimize the
position of the cluster in this embedded space. We first describe the
optimization we use to compute embedded locations, then how we
determine which clusters and particles are embedded, and finally
the cluster optimization.

Embedding Optimization. There are a number of viable spaces
in which to add new clusters. Chentanez and colleagues [2016]
add new clusters in world space, including as members any par-
ticles that fall within a specified radius. This approach is analo-
gous to the world space remeshing performed by Bargteil and col-
leagues [2007]. As pointed out by Wicke and colleagues [2010] this
approach is problematic if there are large elastic deformations and
world space differs greatly from the minimum-stress configuration
of the object. Consequently, they perform a non-linear optimization
to achieve a minimum-stress configuration and perform remesh-
ing in this configuration. Notably, they used a local remeshing
algorithm that avoided the smoothing caused by the global whole-
sale remeshing employed by Bargteil and colleagues [2007]. More
recently, Jones and colleagues [2014] proposed linearizing the opti-
mization problem, finding the best least-squares embedding into
three-dimensional space and performing nearest neighbor queries
in this embedded space. In our case, we seek embedded positions
ei and ec for particles and clusters, respectively that minimize the
elastic energy. Specifically,

argmin
ei ,ec

∑
i,c

wic ∥RFpc pic − (ei − ec) ∥2. (21)

To optimize Equation (21) we use the strain limiting approach of
Bargteil and colleagues [2014] with the maximum allowed stretch

Reclustering for Large Plasticity in Clustered Shape Matching MiG ’17, November 8–10, 2017, Barcelona, Spain

(γ) set to zero. This approach is also very similar to most position-
based dynamics implementations [Müller et al. 2007]. Twenty Jacobi
iterations seems to be more than sufficient to find a good embed-
ding. We consider the optimization converged when the sum of
the squared change in particle positions is 10−8 times that in the
first iteration. We did not experiment with alternative solvers or
convergence criteria.

We initially experimented with linearizing Equation (21) as Jones
and colleagues [2014] did, which amounts to ignoring the rotation,
R and results in three decoupled n × n linear systems (where n is
the sum of the number of particles and the number of clusters).
However, we found that this approach yielded poor embeddings—
the magnitude of the sum in Equation (21) was roughly two orders
of magnitude larger than our nonlinear optimization.

Local Embedding. Jones and colleagues [2014] performed a global
embedding because all particles in their simulation needed to update
their neighbor lists. In our case we seek to add a single cluster at
a time. Consequently we compute a local embedding that is likely
to contain all the particles in the system that would be inside the
cluster in embedded space. Intuitively, we find the set of all the
clusters that contain the candidate particle and their neighboring
clusters, where “neighbors” is defined as sharing a particle, and all
the particles in these clusters. Specifically, ifPc is the set of particles
that are members of cluster c , and Cp is the set of clusters of which
our candidate particle, p, is a member then the set of clusters to
embed, Ce , is

Ce = Cp ∪ {c ∈ C |
(
∃d ∈ Cp

)
(∃q ∈ c) [q ∈ d]} (22)

and the set of particles to embed, Pe , is

Pe = {q ∈ P | (∃c ∈ Ce) [q ∈ c]}. (23)

Cluster Optimization. Once we have computed embedded posi-
tions, we initialize a new cluster center at the candidate particle’s
position in embedded space and run the same clustering optimiza-
tion (see Section 2.3.1) as during initialization holding all other
cluster centers and weights fixed. In a small number of iterations
the cluster center settles into a locally optimal position. It is critical
that the weights reflect the eventual state of clusters being removed
or added, not the current state; if a cluster has been marked for
removal, its weights should be treated as zero during the optimiza-
tion and if a cluster is being added, its weights should be treated as
though the cluster had fully faded in.

Like Chentanez and colleagues [2016] we initialize Fp = 0. Be-
cause our embedding optimization results in small embedding error,
residual plastic deformation is low, making zero a reasonable ap-
proximation. We do not need to estimate Fe because the elastic de-
formation is already, and more accurately, defined by the mapping
from embedded space to world space. As with removing clusters,
we gradually increase the weight of the new cluster over several
timesteps. Once a cluster is added we continue iterating through
the particles looking for additional candidate clusters. A particle
may be a candidate at the beginning of this loop and be added to
another cluster before becoming a candidate initialization point.
Particles could be periodically shuffled to avoid this bias. Also note
that a particle being selected as a seed location for a cluster does
not ensure the particle ends up inside the cluster. However, in our

Figure 2: A beam is compressed. Left: A highly plastic beam. Right:
More elastic deformation. Colors indicate the closest cluster center.
Grey particles are in their original clusters.

experiments, particles are added to clusters after a few timesteps.
Because of this fact, removed clusters fade out over more timesteps
than added clusters fade in.

4 RESULTS
We begin with two didactic examples to demonstrate the robustness
of our approach. In these examples a compression force is applied to
a beam for 4 seconds and released. Specifically at position (x ,y, z)
the force is a f (x ,y, z) = s · (−x , 0.0, 0.0) for some scale factor, s .
In our first example the plastic yield threshold, λ, is set to zero,
so that all volume preserving deformation is plastic. In the video
results we can observe that without reclustering the simulation
becomes unstable. In the second example we increased the scale
factor, s , and set λ = 0.1 to allow for some elastic deformation. In
the accompanying video we compare our approach to an approach
that reclusters in world space and selects new cluster centers from
among the particles that are not in the minimum number of clusters.
This second approach is similar to Chentanez and colleagues [2016],
but omits the critical estimate of Fe from neighboring clusters. The
final frames from these examples using our approach are shown
in figure Figure 2. Without optimizing the embedding space or the
cluster location the simulation is more prone to spurious oscilla-
tions. Quantitative results using our unoptimized research code are
given in Table 1. Compared to no reclustering the highly plastic
example our reclustering algorithm roughly doubles the cost of the
simulation. This cost could probably be reduced by tuning optimiza-
tion convergence thresholds, which we left at conservative values.
Our approach is faster when there is less plastic deformation and,
thus, less need for reclustering, when we increased the plastic yield
threshold, the cost of reclustering was reduced by more than a fac-
tor of 2. It is also worth noting that our embedding optimization is
roughly a third of the reclustering cost. Optimizing cluster centers
incurs negligible computational cost.

In Figure 3 we demonstrate the effect of increasing the number
of clusters. As the number of clusters increases the simulation
“converges” in the sense that it approaches some behavior. Our final
example is of a twisted plastic beam.

Limitations and Future Work. An limitation of our approach
when compared to Chentanez and colleagues [2016] is that we
do not add or remove particles. While this choice trivially preserves
volume it does not allow us to adaptively sample our objects, focus-
ing more computational resources on visually interesting areas of

MiG ’17, November 8–10, 2017, Barcelona, Spain M. Falkenstein et al.

Table 1: Timing results in ms per frame taken on a Macbook Pro with a 2.5 Ghz Intel i7 processor. The beam is discretized with 5317 particles and
200 initial clusters.

Example Dynamics Plasticity Reclustering Embedding Optimization Total
Compressed Beam (no reclustering) 2.07 0.07 0 0 16.17
Compressed Beam (our algorithm) 0.56 0.07 18.60 6.64 35.54
Compressed Beam (no optimization) 0.57 0.07 9.85 0 24.99
Compressed Beam (more elastic, our algorithm) 0.59 0.04 8.03 2.60 20.62
Twisted Beam 1.12 0.16 12.56 3.31 46.54

Figure 3: Decreasing number of clusters from left to right. As the
number of clusters decreases the apparent stiffness increases. The
leftmost bars are visually almost indistinguishable.

Figure 4: A twisted plastic beam. Colors indicate the closest cluster
center. Grey particles are in their original clusters.

the scene. We also do not have a surface tracking module and render
our particles directly. We could employ the method of Bhattacharya
and colleagues [2011; 2015] to skin the particles. We could also use
moving least square to embed a surface mesh, though in this case
the mesh may tangle under very large plastic deformations. Incor-
porating fracture [Jones et al. 2016] is another interesting avenue
for future work.

REFERENCES
Bargteil, A. W. and Jones, B. 2014. Strain Limiting for Clustered Shape Matching. In

Proceedings of the Seventh International Conference on Motion in Games. 177–179.
Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A Finite Element Method

for Animating Large Viscoplastic Flow. ACM Trans. Graph. 26, 3, 16.
Bender, J., Müller, M., Otaduy, M. A., Teschner, M., and Macklin, M. 2014. A Survey

on Position-Based Simulation Methods in Computer Graphics. Computer Graphics
Forum, 1–25.

Bhattacharya, H., Gao, Y., and Bargteil, A. W. 2011. A Level-set Method for Skin-
ning Animated Particle Data. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation.

Bhattacharya, H., Gao, Y., and Bargteil, A. W. 2015. A Level-set Method for Skinning
Animated Particle Data. IEEE Trans. Vis. Comput. Graph. 21, 315–327. Issue 3.

Bouaziz, S., Martin, S., Liu, T., Kavan, L., and Pauly, M. 2014. Projective Dynamics:
Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article
154, 11 pages.

Bridson, R. 2007. Fast Poisson Disk Sampling in Arbitrary Dimensions. In ACM
SIGGRAPH 2007 Sketches. Article 22.

Chentanez, N., Müller, M., and Macklin, M. 2016. Real-time Simulation of Large
Elasto-plastic Deformation with Shape Matching. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 159–167.

Choi, M. G. 2014. Real-time simulation of ductile fracture with oriented particles.
Computer Animation and Virtual Worlds 25, 3-4, 455–463.

Faure, F., Gilles, B., Bousquet, G., and Pai, D. K. 2011. Sparse Meshless Models of
Complex Deformable Solids. ACM Trans. Graph. 30, 4, Article 73, 10 pages.

Gilles, B., Bousquet, G., Faure, F., and Pai, D. K. 2011. Frame-based Elastic Models.
ACM Trans. Graph. 30, 2, Article 15, 12 pages.

Jones, B., Martin, A., Levine, J. A., Shinar, T., and Bargteil, A. W. 2015. Clustering and
Collision Detection for Clustered Shape Matching. In Proceedings of ACM Motion
in Games.

Jones, B., Martin, A., Levine, J. A., Shinar, T., and Bargteil, A. W. 2016. Ductile Fracture
for Clustered Shape Matching. In Proceedings of the ACM SIGGRAPH symposium on
Interactive 3D graphics and games.

Jones, B., Ward, S., Jallepalli, A., Perenia, J., and Bargteil, A. W. 2014. Deformation
Embedding for Point-based Elastoplastic Simulation. ACM Trans. Graph. 33, 2,
Article 21, 9 pages.

Kelager, M., Niebe, S., and Erleben, K. 2010. A Triangle Bending Constraint Model for
Position-Based Dynamics. In Workshop in Virtual Reality Interactions and Physical
Simulation.

Liu, T., Bargteil, A. W., O’Brien, J. F., and Kavan, L. 2013. Fast Simulation of Mass-Spring
Systems. ACM Transactions on Graphics 32, 6, 209:1–7.

Macklin, M., Müller, M., Chentanez, N., and Kim, T.-Y. 2014. Unified Particle Physics
for Real-Time Applications. ACM Trans. Graph. 33, 4.

Müller, M. and Chentanez, N. 2011. Adding Physics to Animated Characters with Ori-
ented Particles. In Workshop in Virtual Reality Interactions and Physical Simulation.
83–91.

Müller, M. and Chentanez, N. 2011. Solid Simulation with Oriented Particles. ACM
Trans. Graph. 30, 4, Article 92, 10 pages.

Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. 2007. Position based dynamics.
J. Vis. Comun. Image Represent. 18, 2, 109–118.

Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless Deformations
Based on Shape Matching. ACM Trans. Graph. 24, 3, 471–478.

Rivers, A. R. and James, D. L. 2007. FastLSM: Fast Lattice Shape Matching for Robust
Real-time Deformation. ACM Trans. Graph. 26, 3, Article 82.

Steinemann, D., Otaduy, M. A., and Gross, M. 2008. Fast Adaptive Shape Matching
Deformations. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. 87–94.

Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O’Brien, J. F.
2010. Dynamic Local Remeshing for Elastoplastic Simulation. ACM Transactions
on Graphics 29, 4, 49:1–11.

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Clustered Shape Matching
	2.3 Shape Matching

	3 Methods
	3.1 The Best Rotation
	3.2 Reclustering

	4 Results
	References

