1. Which statement assigns the value 3 to the variable myNum and prints the value of myNum to the command window?
(a) myNum $==2+1$;
(b) myNum $=2+1$;
(c) $\mathrm{myNum}==3$
(d) myNum $=2+1 \Leftarrow$
(e) $m y N u m=3$;
2. What is the value of oranges after the following code executes?
```
apples = 8;
oranges = 2;
oranges = oranges + apples;
apples = apples - 1;
```

(a) $10 \Leftarrow$
(b) 9
(c) 8
(d) 7
(e) 2
3. Which of the following is not a valid Matlab identifier?
(a) MyNumber
(b) my_array2
(c) myArray
(d) start
(e) end \Leftarrow
4. Indicate whether each statement is true or false.
($\mathrm{T} / \boxed{\mathrm{F}}$) A double precision number's range is about 100 times greater than a single precision number's range.
(T/ F) Following the assignment myNum $=4$, the variable myNum will be of type int32.
(T/F) Floating point numbers can represent larger numbers than unsigned integers.
(T / F) Due to rounding error, it is not necessarily true that $(a+b)+c=a+(b+c)$ for some floating points values $\mathrm{a}, \mathrm{b}, \mathrm{c}$.
($\mathrm{T} / \boxed{\mathrm{F}}$) eps (number) will give the relative error associated with representing that number in floating point.
($\mathrm{T} / \boxed{\mathrm{F}}$) Computing 0/0 will yield the value Inf.
(T / F) Computing Inf - Inf with yeild the value NaN.
5. Using the precendence rules for arithmetic operators, determine which statement is true.
(a) $2 / 2 * 3==2 / 6$
(b) $2-2 * 2==16$
(c) $1+2 * 3==9$
(d) $4 / 2+2==4 \Leftarrow$
(e) $2-3 * 2==-2$
6. Consider the function definition,

```
function [ apples, oranges ] = MyFunction( pears )
    apples = pears * 2;
    oranges = pears - 1;
end
```

and the following code that calls this function:

```
apples = 1;
oranges = 2;
pears = 3;
[ oranges, pears ] = MyFunction( apples );
```

What will be the value of apples, oranges, and pears after the code executes?
(a) apples $=1$, oranges $=0$, and pears $=2$
(b) apples $=6$, oranges $=2$, and pears $=3$
(c) apples $=1$, oranges $=2$, and pears $=0 \Leftarrow$
(d) apples $=6$, oranges $=2$, and pears $=3$
(e) apples $=1$, oranges $=2$, and pears $=3$
7. Which statement regarding functions and scripts is false?
(a) By default, variables defined in a script will be visible in the main workspace.
(b) By default, variables defined in a function will not be visible in the main workspace.
(c) Functions can be called with multiple input parameters.
(d) Scripts are terminated with the end keyword. \Leftarrow
(e) Scripts are not called with input parameters.
8. For each fprintf statement in the left column, draw a line to the corresponding output in the right column.

fprintf('--\%4.2f--', 3.1415926$)$
fprintf('--\%\%5.2f--', 3.1415926$)$
fprintf('--\%4.2e--', 3.1415926)
fprintf('--\%f--', 3.1415926)

$--3.14--$
$--3.14--$
$--3.14 \mathrm{e}+00--$
$--3.141593--$

9. Which statement regarding 1D arrays is true?
(a) myArray $=[1,2,3,4]$; creates a row array of size 4×1.
(b) myArray $=[1,2,3,4]^{\prime}$; creates a row array of size 4×1.
(c) myArray $=[3:-1: 0]$; creates a row array of size 1×3.
(d) myArray $=[1: 2: 4]$; creates a row array of size 1×3.
(e) myArray $=[1: 7]^{\prime} ; \operatorname{myArray}(6)=[]$; results in an array of size $6 \times 1 . \Leftarrow$
10. Consider the following code:
myArray = [1:10];
smallNumbers = myArray < 5;
smallNumbersArray $=$ myArray (smallNumbers);
Indicate whether each statement is true or false.
(T/LF) smallNumbersArray has length 5.
(T / F) smallNumbers is of class logical.
$(\mathrm{T} / \boxed{\mathrm{F}})$ The code above generates an error.
(T / F) The relational operation in the second line of code is evaluated elementwise.
11. Given myArray $=[10,20,30,40,50]$, match the statement in the left column with the resulting array in the right column.

myArray (end-1:-1:1) $\operatorname{myArray}(2,5)$ myArray $($ myArray<1) $\operatorname{myArray}(6)$

$[40,30,20,10]$
error
empty matrix
error

12. Consider the following code:
```
apples = 3;
oranges = 2;
pears = 1;
```

Indicate whether each statement is true or false.
$(\mathrm{T} / \mathrm{F})$ apples <= oranges +1
$(\mathrm{~T} / \mathrm{F})$ apples $=$ oranges +1
$(\mathrm{~T} / \mathrm{F})$ (apples > oranges) \& (pears < 2)
$(\mathrm{T} / \mathrm{F})$ (apples < oranges) | (pears < 2)
$(\mathrm{T} / \mathrm{F})$ (pears \& apples) < oranges
13. Consider two floating point numbers, x and y, whose values lie between 1 and 10 . Which of the following might be a good way to test for equality of x and y ?
(a) $\operatorname{abs}(x-y)<1$
(b) $x==y$
(c) $y-x<.00001$
(d) abs $(x+y)<.00001$
(e) None of the above. \Leftarrow
14. Fill in the following truth tables.

X	Y	$\operatorname{and}(\mathrm{X}, \mathrm{Y})$
0	0	0
0	1	0
1	0	0
1	1	1

X	Y	xor (X, Y)
0	0	0
0	1	1
1	0	1
1	1	0

X	Y	$\operatorname{or}(\operatorname{not}(\mathrm{X}), \mathrm{Y})$
0	0	1
0	1	1
1	0	0
1	1	1

15. Let
$\mathrm{x}=[1,2,3,4]$;
$\mathrm{y}=[-1,0,1,2]$;
For each expression below, use the space provided to write the value of the expression or error if the expression is not valid Matlab code.

$\mathrm{x} \cdot * \mathrm{y}$	$[-1,0,3,8]$
$\mathrm{x} \cdot{ }^{\wedge} \mathrm{y}$	$[1,1,3,16]$
$\mathrm{x} * \mathrm{y}$	error
$\mathrm{x} * \mathrm{y}^{\prime}$	10
$\mathrm{x} \cdot \mathrm{y} \mathrm{y}$	$[-1.0000,0, .333, .5000]$
$\mathrm{x} \cdot+\mathrm{y}$	error
$\mathrm{x}-2$	$[-1,0,1,2]$

16. For each expression below, use the space provided to write the value of the expression or error if the expression is not valid Matlab code.

$\operatorname{not}([0,1,1,0])$	$[1,0,0,1]$
$[0,1,0] \&[1,0,0]$	$[0,0,0]$
$[0,1,0] \mid 1$	$[1,1,1]$
$\operatorname{not}([0,1,0]) \& 1$	$[1,0,1]$

17. Given the array myArray $=[-1,2,0,4,-5]$, which statement sets all of the negative elements of myArray to 0 ?
(a) myArray $=($ myArray $>=0) . *$ myArray \Leftarrow
(b) myArray $=(m y A r r a y<0) . *$ myArray
(c) myArray $=(m y A r r a y ~ ~=0) . *$ myArray
(d) myArray (myArray<0) $=$ myArray \& 0
(e) None of the above.
18. Which code generated the figure shown?

```
(a) x = [0:1:2*pi];
    y = sin(x);
    z = cos(x);
    hold on
    plot(x,y,'-k');
    plot(x,z,'-k');
(b) x = [0:.01:2*pi];
    y = sin(x);
    z = cos(x);
    plot(x,y,'-k');
    plot(x,z,'-k');
(c) x = [0:.05:2*pi];
    y = sin(x);
    z = cos(x);
    plot(x,y,'-k');
    plot(x,z,'-.k');
```

19. Consider the following code.
```
x = [ 1, 2, 3, 4 ];
y = 7;
z = 1;
save MyFile y z;
```

Which statment is true?
(a) All of the variables in the workspace are saved to a file MyFile.mat.
(b) load MyFile loads the value of x into the workspace.
(c) load MyFile z loads only the value of z into the workspace. \Leftarrow
(d) The code above would generate an error.
(e) None of the above.
20. Indicate whether each statement is true or false.
(T/F) myName $=$ 'Sam'; myName (4) = 'e' results in myName == 'Same'.
(T/F) The command uint8 ('ABC') will display the ASCII code for the letters A,B, and C.
(T/ F $)$ char('Hello','my','name','is','Sam') will create another string by concatenating the input strings.
(T / F) The code 'Sam' == 'sam' generates true.
$(\mathrm{T} / \mathrm{F})$ The code lower ('Sam') == 'sam' generates true.
21. Consider the following code:

```
myString = 'Hello, how are you doing 2day? '
isSpaceArray = isspace(myString);
myString2 = myString(~}isSpaceArray
myString3 = myString(isletter(myString))
```

Which statment is false after the code runs?
(a) myString2 == 'Hello,howareyoudoing2day?'
(b) myString3 has 22 elements.
(c) strrep(myString2,'2','to') results in the string 'Hello,howareyoudoingtoday?'
(d) find(myString $==$ 'h') returns the array $[1,8] . \Leftarrow$
(e) lower(myString2) == 'hello,howareyoudoing2day?'.
22. Match the statement in the left column with the resulting value in the right column.

```
myArray = [ 1, 2, 3, 4; 5, 6, 7, 8 ]
```

myArray $=[1,2,3,4 ; 5,6,7,8]$ '

$$
\text { myArray }=[[1,2] ;[4,5,6]]
$$

23. For 2 D arrays, which statement is false?
(a) Row-column indexing uses two numbers to index the array while linear indexing uses one number.
(b) If the linear index of element (m, n) is k , then the linear index of element $(\mathrm{m}, \mathrm{n}+1)$ is $\mathrm{k}+1 . \Leftarrow$
(c) The second column of a 3×2 array myArray would be accessed as myArray (: , 2).
(d) The first row of a 3×2 array myArray would be accessed as myArray (1,:).
(e) For $\mathrm{x}=[1,2,3]$ and $\mathrm{y}=[1,2], \mathrm{x}^{\prime} * \mathrm{y}$ yields a 3×2 array.
24. Let
myArray $=[1,2,3,4 ; 5,6,7,8 ; 9,10,11,12]$
Which statement is false?
(a) myArray $(:, 3)=[]$ deletes the third column of myArray.
(b) myArray (1:2,3:4) gives the array $[3,4 ; 7,8]$.
(c) myArray $([3:-1: 1], 1)$ gives the array $[9,5,1]$.
(d) $\operatorname{my} \operatorname{Array}([1,1,1], 1)$ gives an error. \Leftarrow
(e) myArray $([1: 2: 3],[1: 2])$ is equivalent to myArray $(1: 2: 3,1: 2)$.
25. Let
myArray $=[10,20,30,40 ;-5,6,0,1 ; 1,-2,11,3]$
Indicate whether each statement is true or false.
$(\mathrm{T} / \mathrm{F})$ myArray2 $=$ myArray (:) results in myArray2 having size 12×1.
$(\overline{\mathrm{T}} / \mathrm{F})$ myArray2 $=$ reshape $($ myArray , 4,3) results in myArray2 having size 4×3.
$(\mathrm{T} / \mathrm{F})$ myArray $2=$ reshape $($ myArray $, 2,2)$ results in myArray2 having size 2×2.
$(\mathrm{T} / \mathrm{F})$ The statement myArray $(:)=\operatorname{myArray}(:)+[1: 12]^{\prime}$ will change the shape of myArray.
(T / F) reshape (myArray, 12,1) yields a 1D column array.

