
CS30 Spring 2014
Lab 8

Use the command diary to record your answers and submit them. Submit code for the functions and
scripts you write. Submit any figures.

1. (50 points) Recursive functions. Given as input a list of integers, positive or negative, return the
list sorted from smallest to largest. Do this by writing your own implementation of merge sort, an
algorithm for sorting a list. Merge sort is based on a merge step, where given two lists, each individually
sorted, they are merged into one sorted list.

(a) Write a function MergeLists that takes as input two sorted lists list1, list2, and returns as
output mergedList. For example

>> MergeLists([1, 4, 6], [-1, 2, 3, 4, 5, 6 ])

ans =

-1 1 2 3 4 4 5 6 6

(b) Write the recursive sorting algorithm MergeSort which takes as input the unsorted list list and
returns as output the sorted list sortedList. Merge sort works as follows. If the input list has
only one element, it returns the input list. Otherwise, it splits the input list in two approximately
equal sublists, calls MergeSort recursively on each sublist, and then calls MergeLists to merge
the two sorted sublists. Your function should satisfy the following test cases:

>> MergeSort([1])

ans =

1

>> MergeSort([-2 3 10 3 -8 -6 8 0 9 9])

ans =

-8 -6 -2 0 3 3 8 9 9 10

>> MergeSort([ -12 3 6 6 -1 -1 -1 -11 1 -14 ])

ans =

-14 -12 -11 -1 -1 -1 1 3 6 6

(c) Compare the performance of your MergeSort with Matlab’s function sort. Make two plots
showing list length vs. run time for both implementations, with lists of length up to 1 million
elements. You can call the functions on random integer lists generated using randi, and use the
functions tic and toc to time the sorting algorithms.

2. (50 points) Newton’s Method. Recall that Newton’s method can be used to find roots of a function. It
starts with an initial guess x0, and proceeds iteratively. In particular, given the current value for the
root xk, Newton’s method generates a better value by solving

xk+1 = xk −
f(xk)

f ′(xk)

where f ′ is the first derivative of f .

(a) Write a generic implementation of Newton’s method NewtonsMethod that takes as input a handle
to the function f , a handle to the first derivative function f ′, an initial guess and a stopping
threshold ε, and returns as output the final iterate xk. Newton’s method iterates until |f(xk)| <
ε. Make the initial guess and stopping threshold optional, with default values of 0 and 10−5,
respectively. Allow a maximum of 100 iterations, even if the stopping criterion hasn’t been met.
Output a warning if the maximum number of iterations was computed and the method did not
converge. Test your function on some of Matlab’s built-in math functions, as follows.
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>> NewtonsMethod(’sin’,’cos’,pi/2+.1)

ans =

12.5664

>> NewtonsMethod(@cos,@(x) -sin(x),pi/2+.1)

ans =

1.5708

(b) Let f(x) = x2 − 2 . On the command line, set the variable myPoly to be a function handle for an
anonymous function implementing f , and set the variable myPolyDeriv to be a function handle
for an anonymous function implementing f ′. Run the following command:

>> NewtonsMethod(myPoly,myPolyDeriv,.1,10^-7)

ans =

1.4142

Do the same for f(x) = x3 + 3x2 + 1.

>> NewtonsMethod(myPoly,myPolyDeriv,.1)

Warning: did not converge in 100 iterations

ans =

-3.1038
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