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A Newtonian ParticleA Newtonian Particle

• Differential equation: f = ma
• Forces can depend on:
– Position, Velocity, Time

( , , )t
m

=
f x xx !!!
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Second Order EquationsSecond Order Equations
Not in our standard form
because it has 2nd
derivatives

Add a new  variable, v, to get
a pair of coupled 1st order
equations.
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Phase SpacePhase Space
Concatenate x and v to make
a 6-vector:  Position in Phase
Space.

Velocity in Phase Space:
another 6-vector.

A vanilla 1st-order differential
equation.
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Particle StructureParticle Structure
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Position in
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Solver InterfaceSolver Interface
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Particle SystemsParticle Systems
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Solver InterfaceSolver Interface

6n
x1 v1 x2 v2 xn vn
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mn

particles n time

Deriv EvalDeriv Eval

Get/Set StateGet/Set State

Dim(State)Dim(State)

Particle System

Diffeq Solver
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A Code Fragment

void EulerStep(ParticleSystem* p, float dt)
{
    Vector temp1,temp2;

    temp1 = p->ParticleDerivative();
    temp1 *= dt;
    p->GetState(temp2);
    temp2 += templ;
    p->SetState(temp2); 
    p->time += dt;
}



ForcesForces

• Constant gravity

• Position/time dependent force fields

• Velocity-Dependent drag

• n-ary springs

SC11SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED MODELING



Force StructuresForce Structures
• Unlike particles,  forces are

heterogeneous.
• Force Objects:

– black boxes
– point to the particles they influence
– add in their own forces (type dependent)

• Global force calculation:
– loop, invoking force objects
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Particle Systems, with forcesParticle Systems, with forces
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particles n time forces nforces

… FFF F F

A list of force
objects to invoke
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GravityGravity

x
v
f
m

G

apply_funp
sys

p->f += p->m * F->Gp->f += p->m * F->G

F

Force Law: Particle system
grav m=f G
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Viscous DragViscous Drag

x
v
f
m

k

apply_funp
sys

p->f -= F->k * p->vp->f -= F->k * p->v

F

Force Law: Particle system
drag dragk= −f v
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Damped
Spring
Damped
Spring
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apply_fun

sys

Particle system

Force Law:
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Solver InterfaceSolver Interface

Get/Set State

System
Dim(state) Solver

Deriv Eval

You are
Here
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Deriv Eval LoopDeriv Eval Loop

… FFF F F
Clear Force 
Accumulators Invoke apply_force

functions
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Return [v, f/m,…]
to solver.
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Controlled Particles



Controlled Particles



Bouncing off the WallsBouncing off the Walls

• Later:  rigid body
collision and contact.

• For now, just simple
point-plane collisions.

• Add-ons for a particle
simulator.
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Collisions: Two Parts
Detection Response



Collision DetectionCollision Detection

N

X
V

P

N⋅V < 0
( )X - P ⋅N < ε

• Within ε of the wall.
• Heading in.
• Within ε of the wall.
• Heading in.
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Collision ResponseCollision Response

VN

VT

-krVN

V

V! =  VT - krVN

V!VT

Before After
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Contact ForceContact Force

The wall pushes back,
cancelling the normal
component of F.

(An example of a
constraint force.)

F

F!

N

F! = FT
 -FN
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Try this at home!Try this at home!

The notes give you everything you need
to build a basic interactive mass/spring
simulator—try it.
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Basic 2-D InteractionBasic 2-D Interaction

XXX Operations:
– Create
– Attach
– Drag
– Nail

CursorCursor

Mouse
Spring
Mouse
Spring

NailNail
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