# CS260 Lecture 3: Particle Systems



## Particle Systems

#### Andrew Witkin













# Particle Systems Examples



# Particle Systems Examples



# Particle Systems Examples



## **A Newtonian Particle**

- Differential equation: f = ma
- Forces can depend on:
  - Position, Velocity, Time

$$\ddot{\mathbf{x}} = \frac{\mathbf{f}(\mathbf{x}, \dot{\mathbf{x}}, t)}{m}$$

#### **Second Order Equations**

 $\ddot{\mathbf{x}} = \frac{\mathbf{f}(\mathbf{x}, \dot{\mathbf{x}}, t)}{m}$ 

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{v} \\ \dot{\mathbf{v}} = \mathbf{f}/m \end{cases}$$

Not in our standard form because it has 2nd derivatives

Add a new variable, v, to get a pair of coupled 1st order equations.

## **Phase Space**

Concatenate **x** and **v** to make a 6-vector: *Position in Phase Space*.

Velocity in Phase Space: another 6-vector.

A vanilla 1st-order differential equation.



## **Particle Structure**



#### **Solver Interface**



## **Particle Systems**





# A Code Fragment

```
void EulerStep(ParticleSystem* p, float dt)
{
    Vector temp1, temp2;
    temp1 = p->ParticleDerivative();
    temp1 *= dt;
    p->GetState(temp2);
    temp2 += temp1;
    p->SetState(temp2);
    p->time += dt;
```

#### Forces

Constant gravity
Position/time dependent force fields
Velocity-Dependent drag
n-ary springs

## **Force Structures**

- Unlike particles, forces are heterogeneous.
- Force Objects:
  - black boxes
  - point to the particles they influence
  - add in their own forces (type dependent)
- Global force calculation:
  - loop, invoking force objects

## **Particle Systems, with forces**





## Viscous Drag





## **Solver Interface**





## **Controlled Particles**

# **Controlled Particles**



## **Bouncing off the Walls**



- Later: rigid body collision and contact.
- For now, just simple point-plane collisions.
- Add-ons for a particle simulator.



## **Collision Detection**



# $(\mathbf{X} - \mathbf{P}) \cdot \mathbf{N} < \varepsilon$ $\mathbf{N} \cdot \mathbf{V} < 0$

Within ε of the wall.Heading in.

#### **Collision Response**





# Contact Force $\mathbf{F}' = \mathbf{F}_{\mathrm{T}}$

The wall pushes back, cancelling the normal component of F.

(An example of a *constraint force.*)

## Try this at home!

#### The notes give you everything you need to build a basic interactive mass/spring simulator—try it.

## **Basic 2-D Interaction**



**Operations:** 

- Create
- Attach
- Drag
- Nail