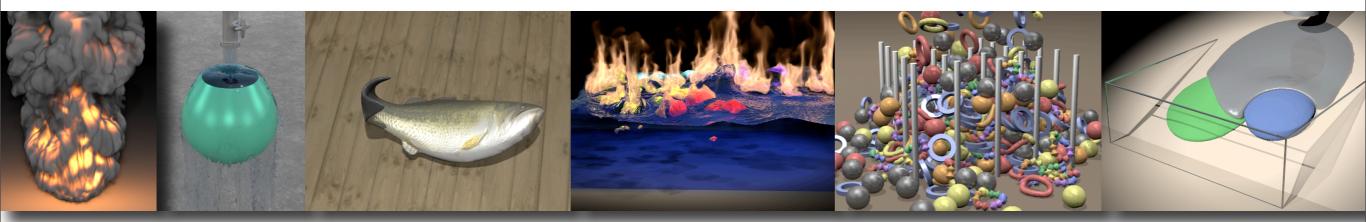
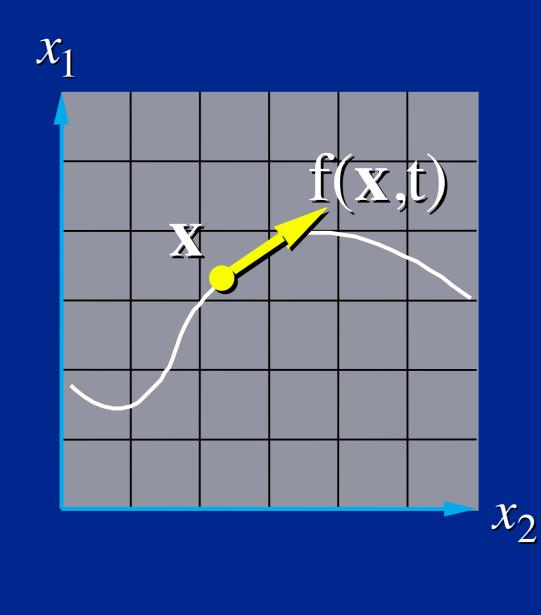
CS260 Lecture 2: Differential Equation Basics



Differential Equation Basics

Andrew Witkin

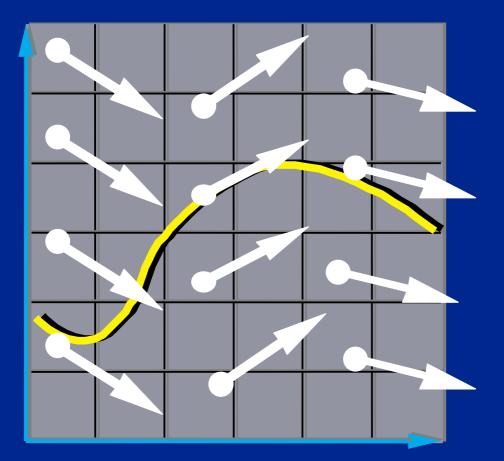
A Canonical Differential Equation



$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

- **x**(*t*): a moving point.
- **f**(**x**,*t*): **x**'s velocity.

Vector Field

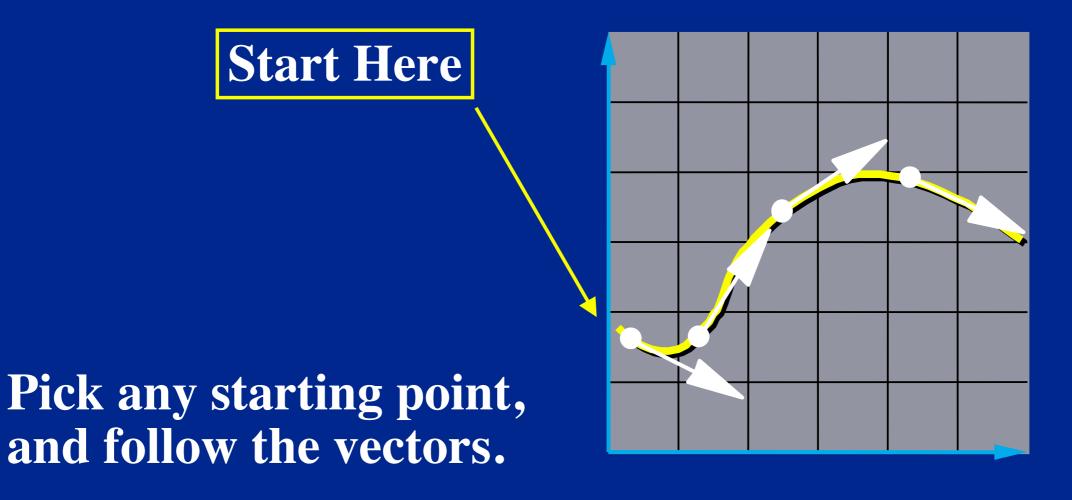


The differential equation

 $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$

defines a vector field over x.

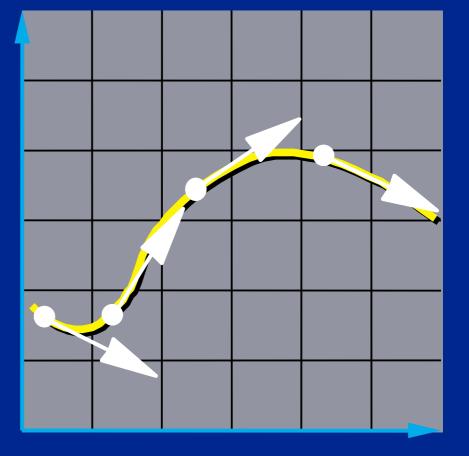
Integral Curves



Initial Value Problems

Given the starting point, follow the integral curve.

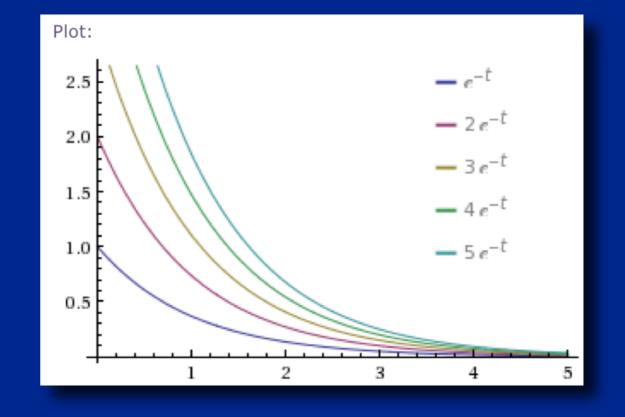
$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}, t) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases} \Rightarrow \mathbf{x}(t), t \ge t_0$$

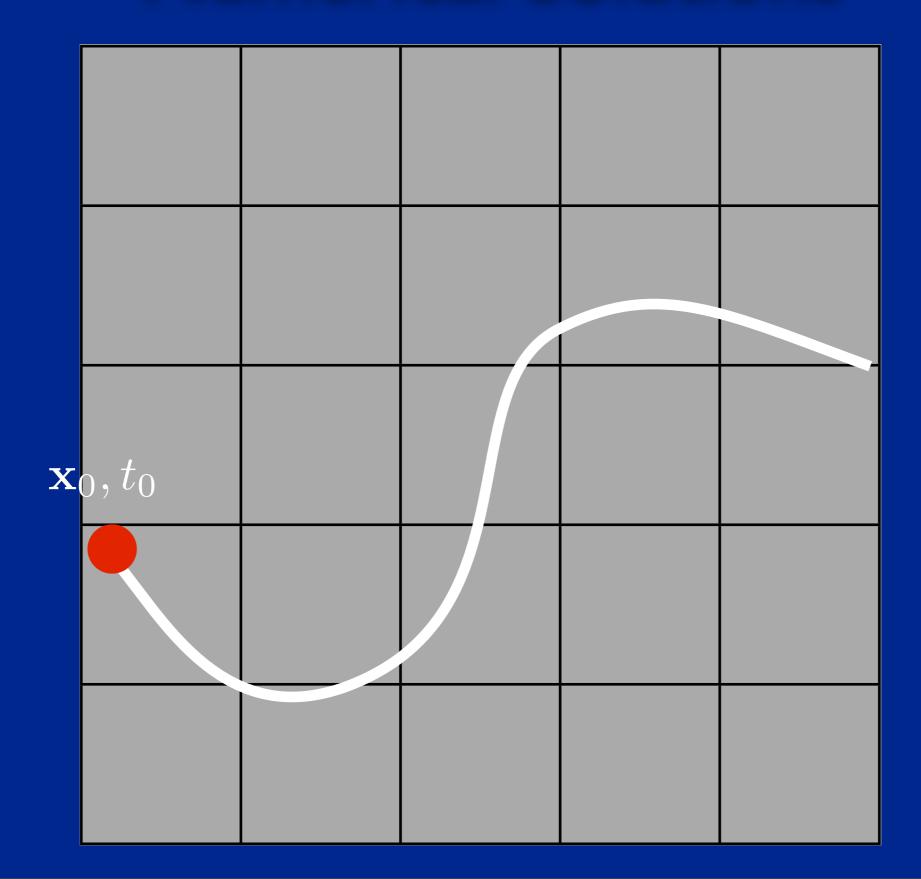


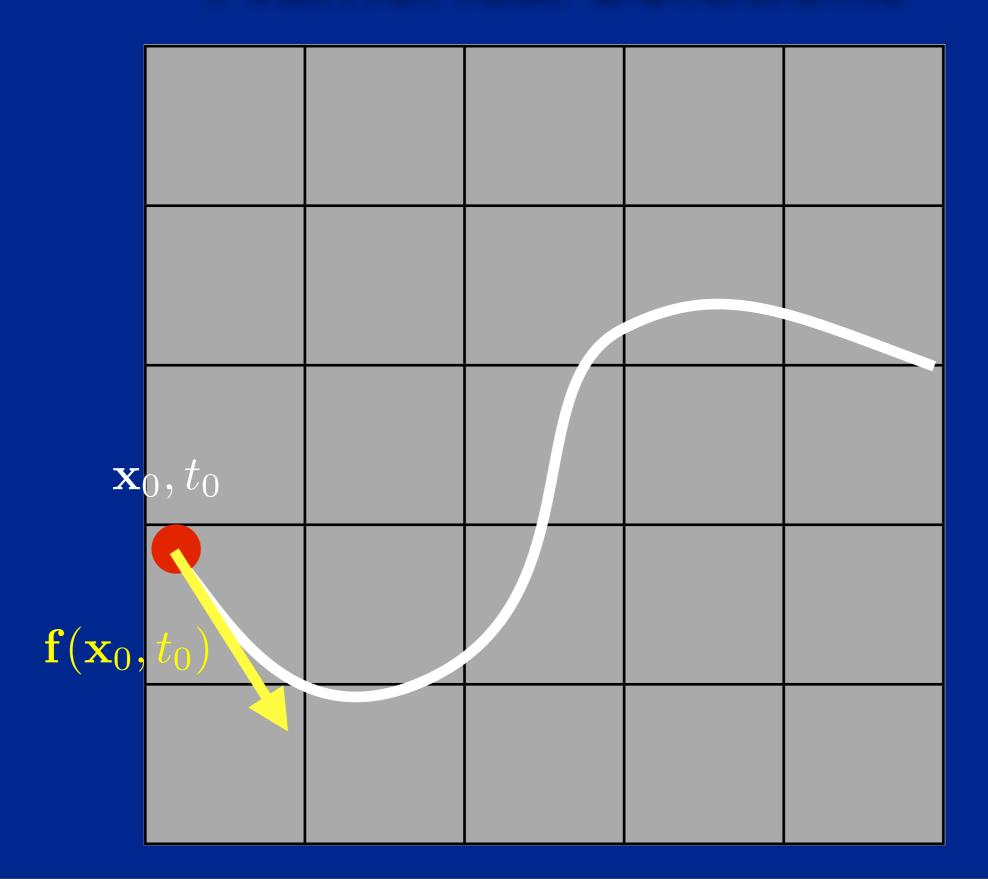
Closed Form Solutions

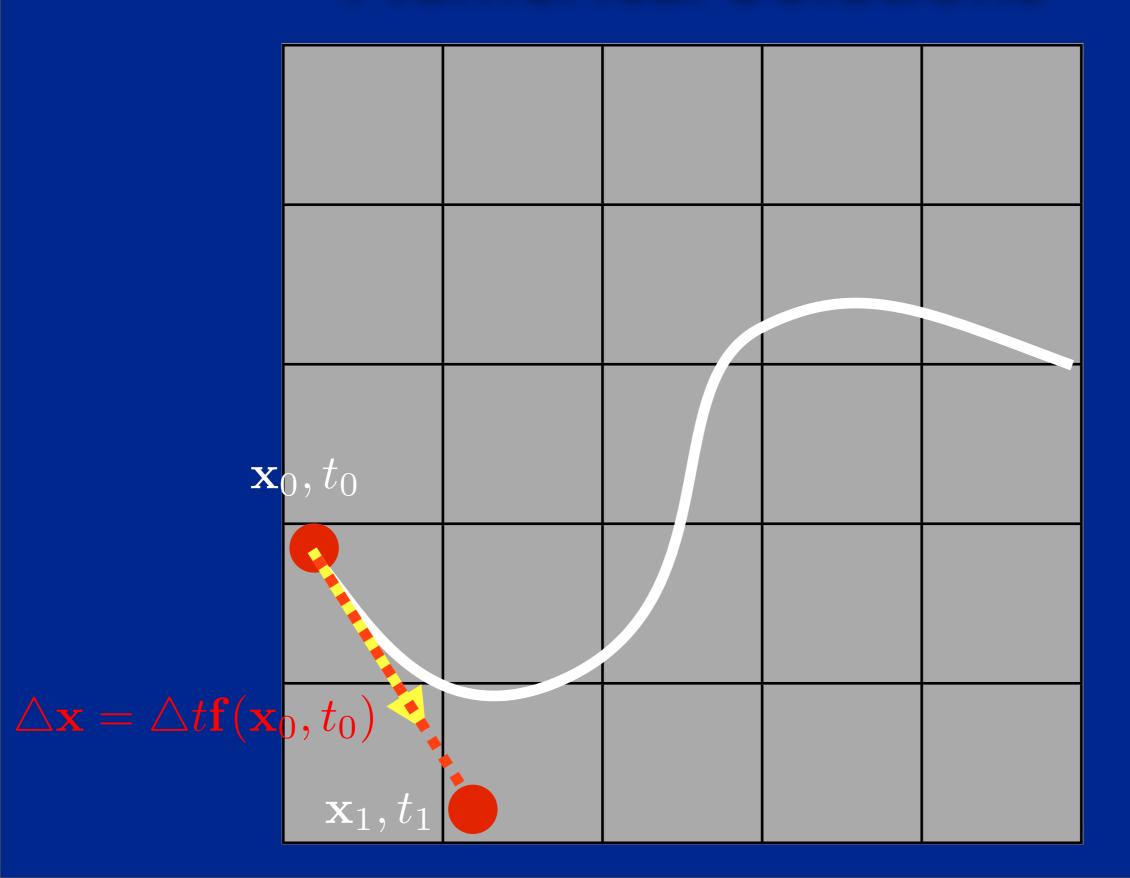
Some simpler IVPs have closed form solutions

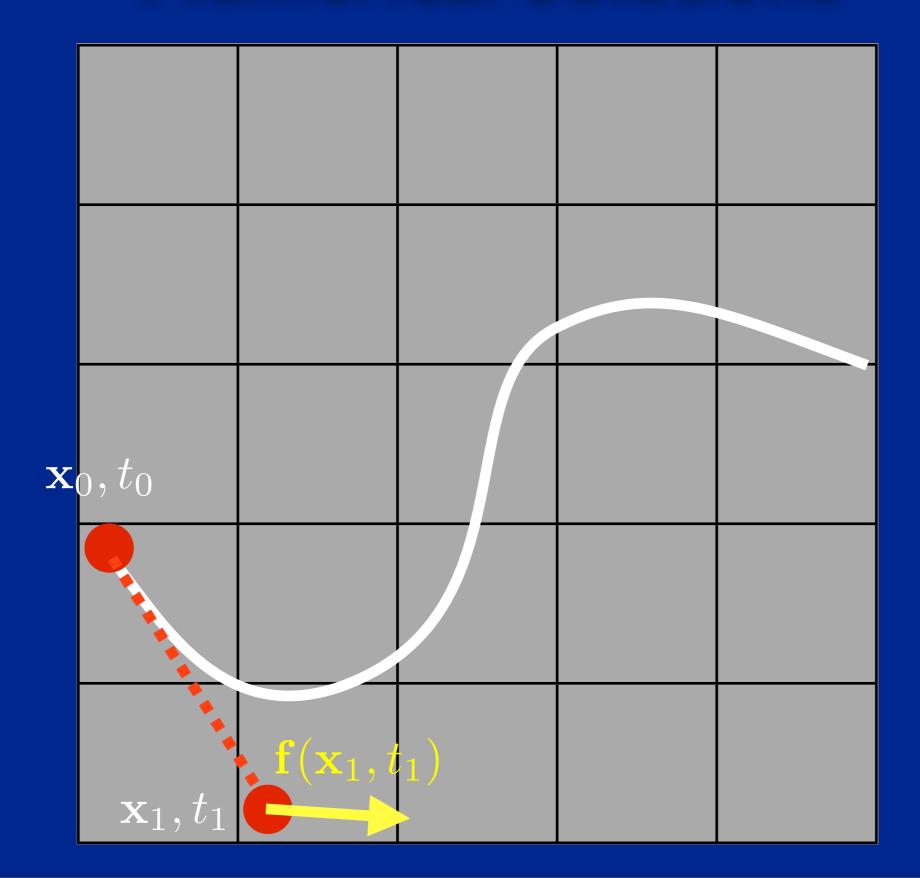
 $\begin{cases} \dot{\mathbf{x}}(t) = -k\mathbf{x}(t) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}$ $\Rightarrow \mathbf{x}(t) = \mathbf{x}_0 e^{-k(t-t_0)}, t \ge t_0$

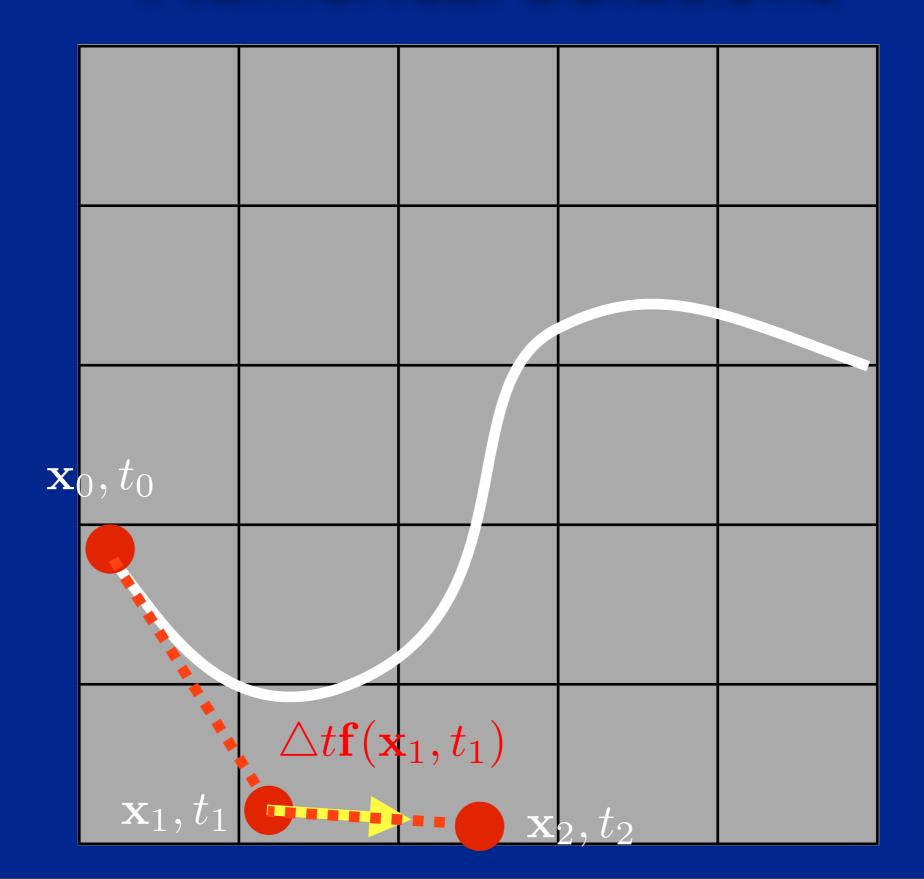


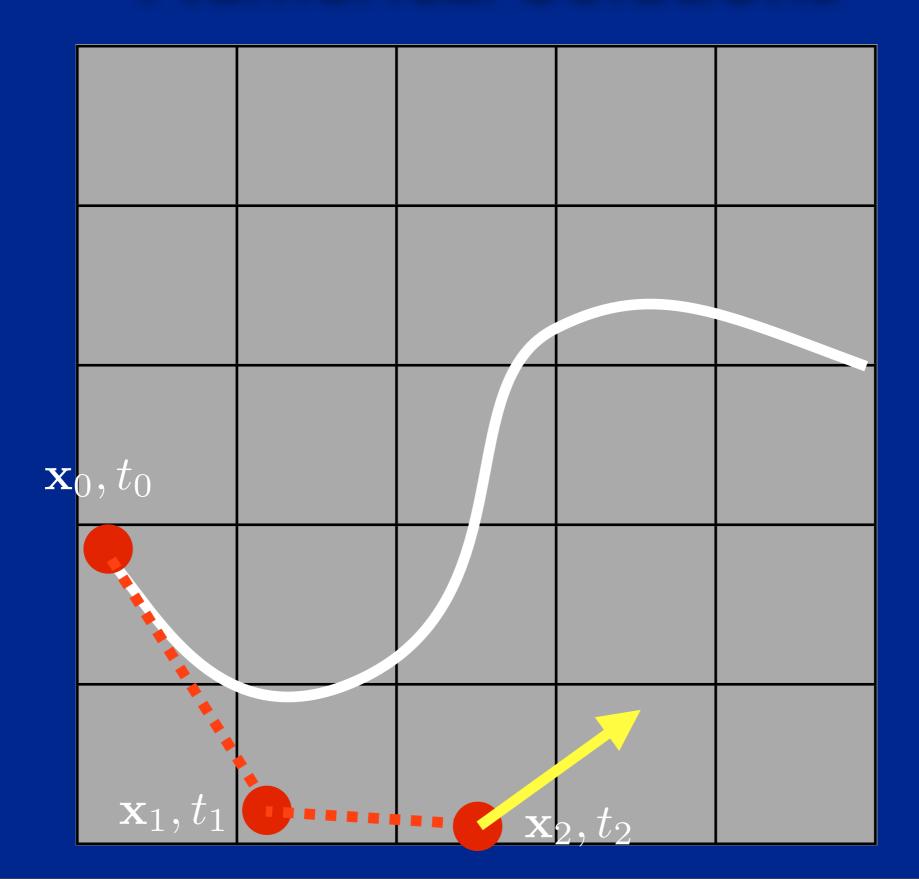


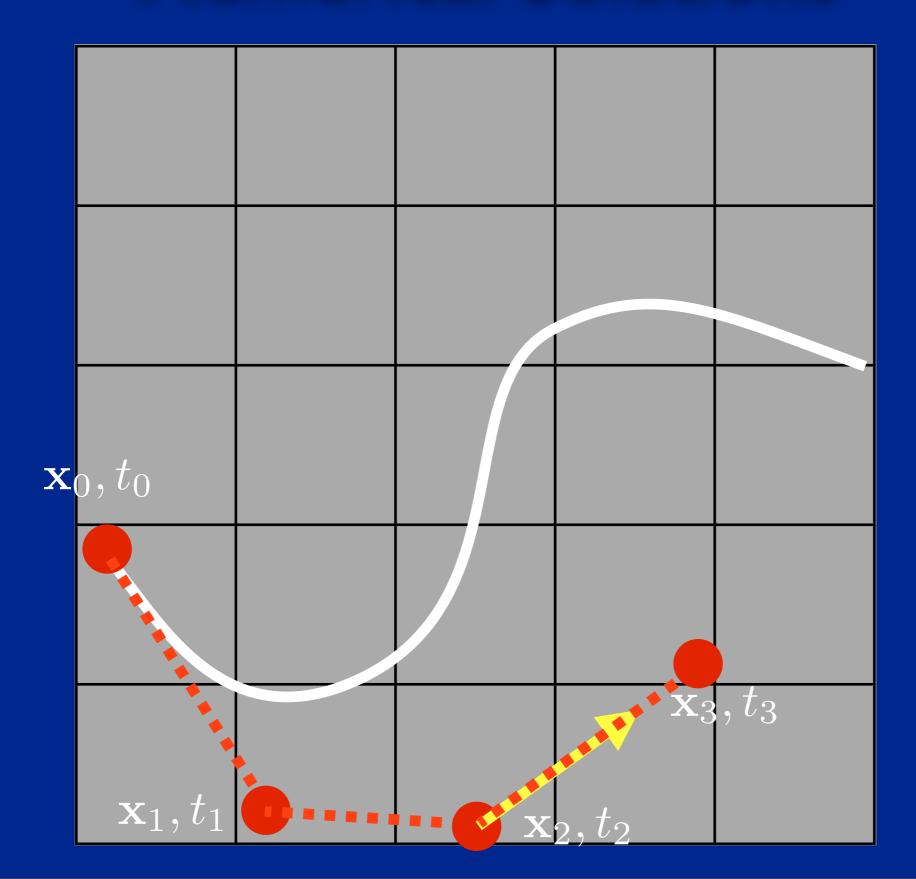


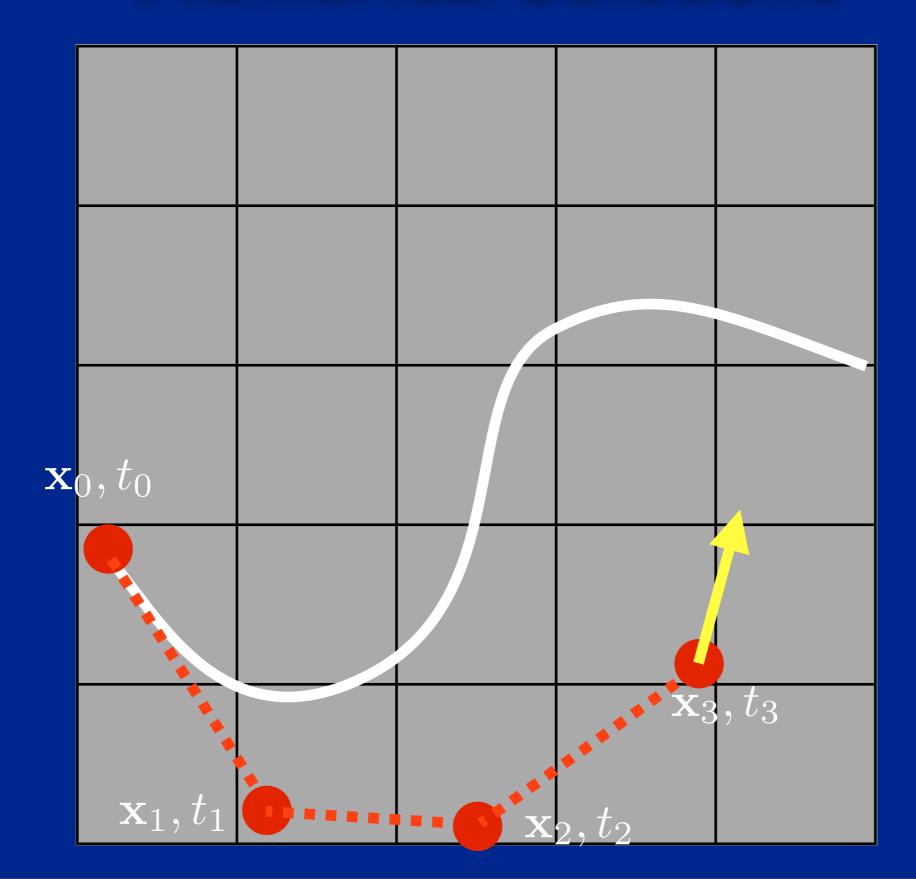


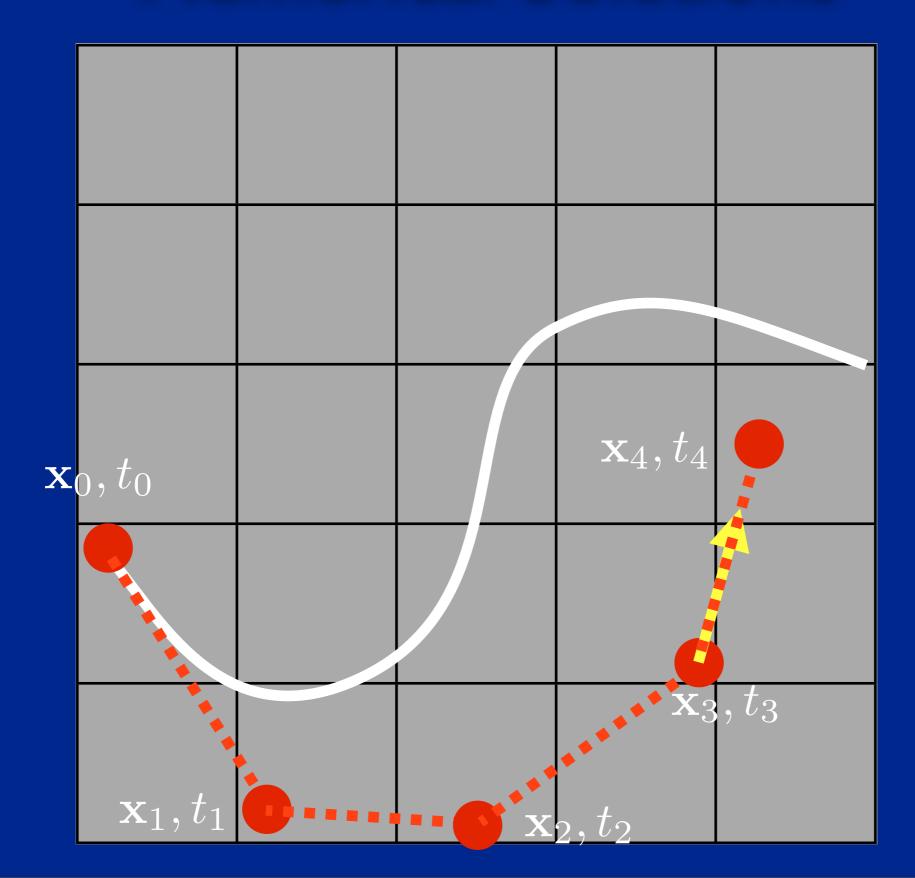


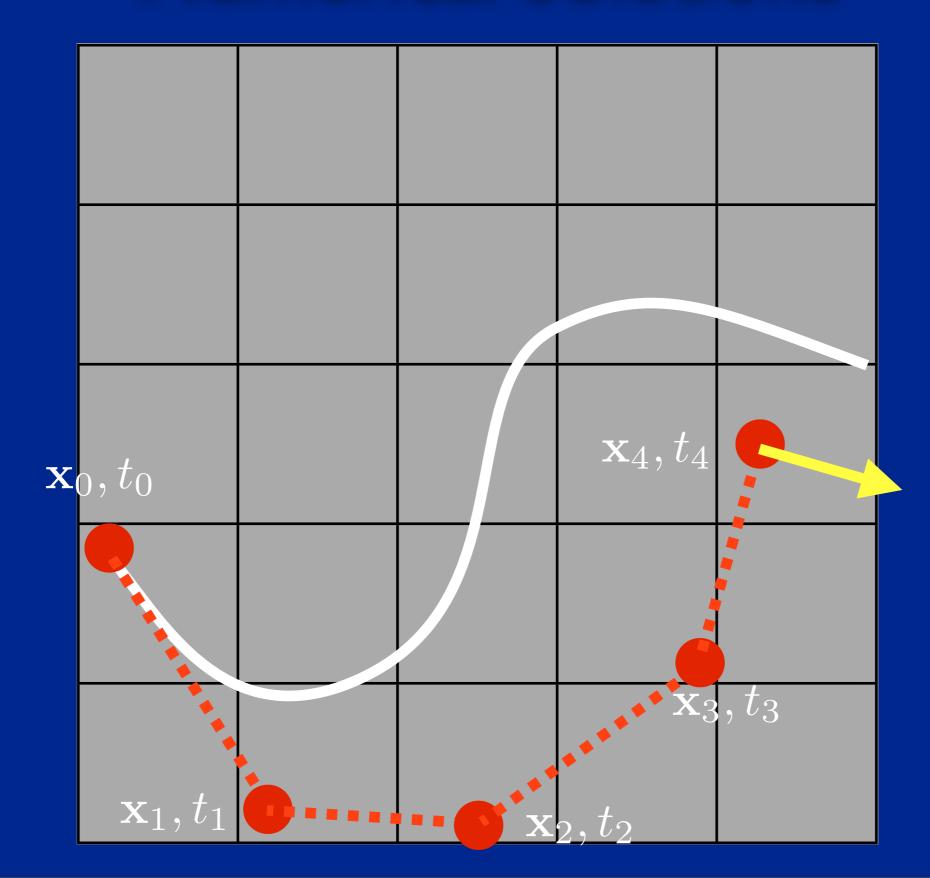


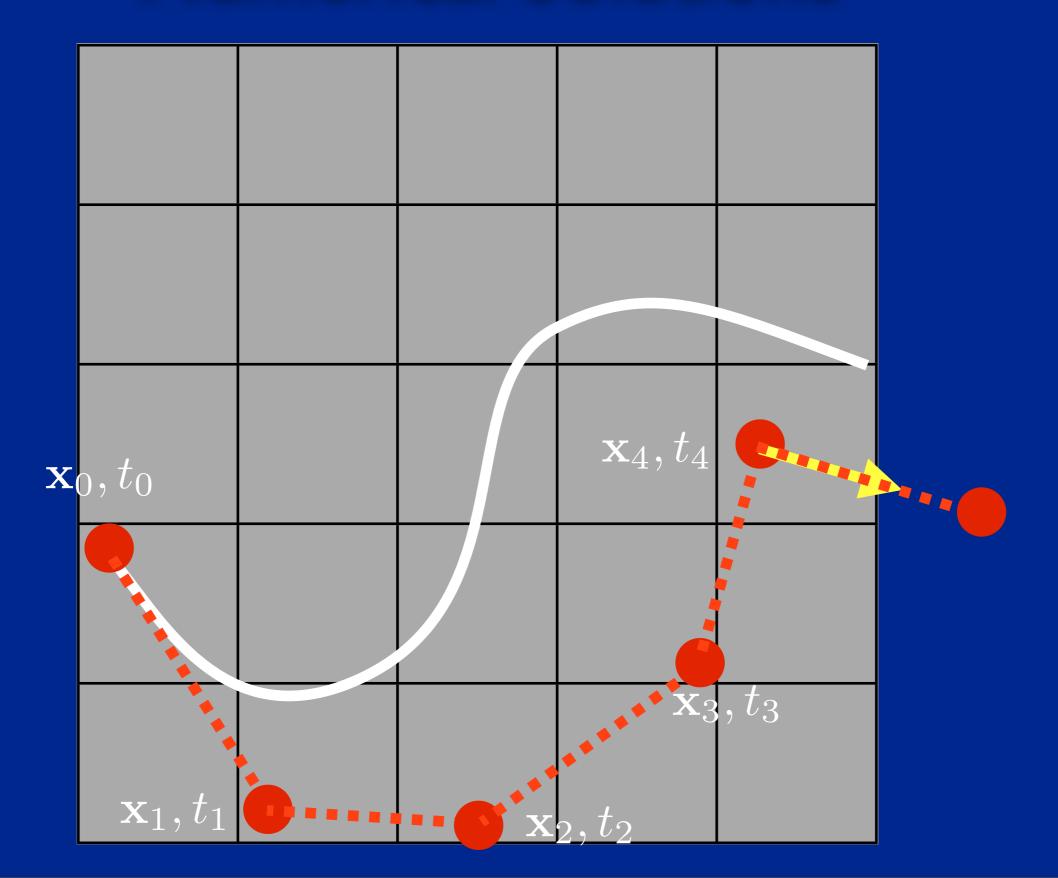




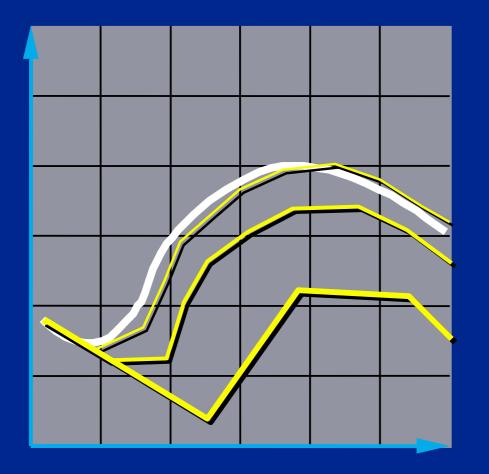








Euler's Method



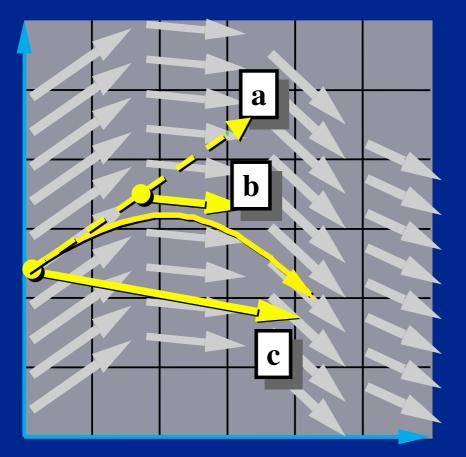
- Simplest numerical solution method
- Discrete time steps
- Bigger steps, bigger errors.

 $\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \, \mathbf{f}(\mathbf{x}, t)$

Problem I: Inaccuracy

Error turns x(t) from a circle into the spiral of your choice.

The Midpoint Method

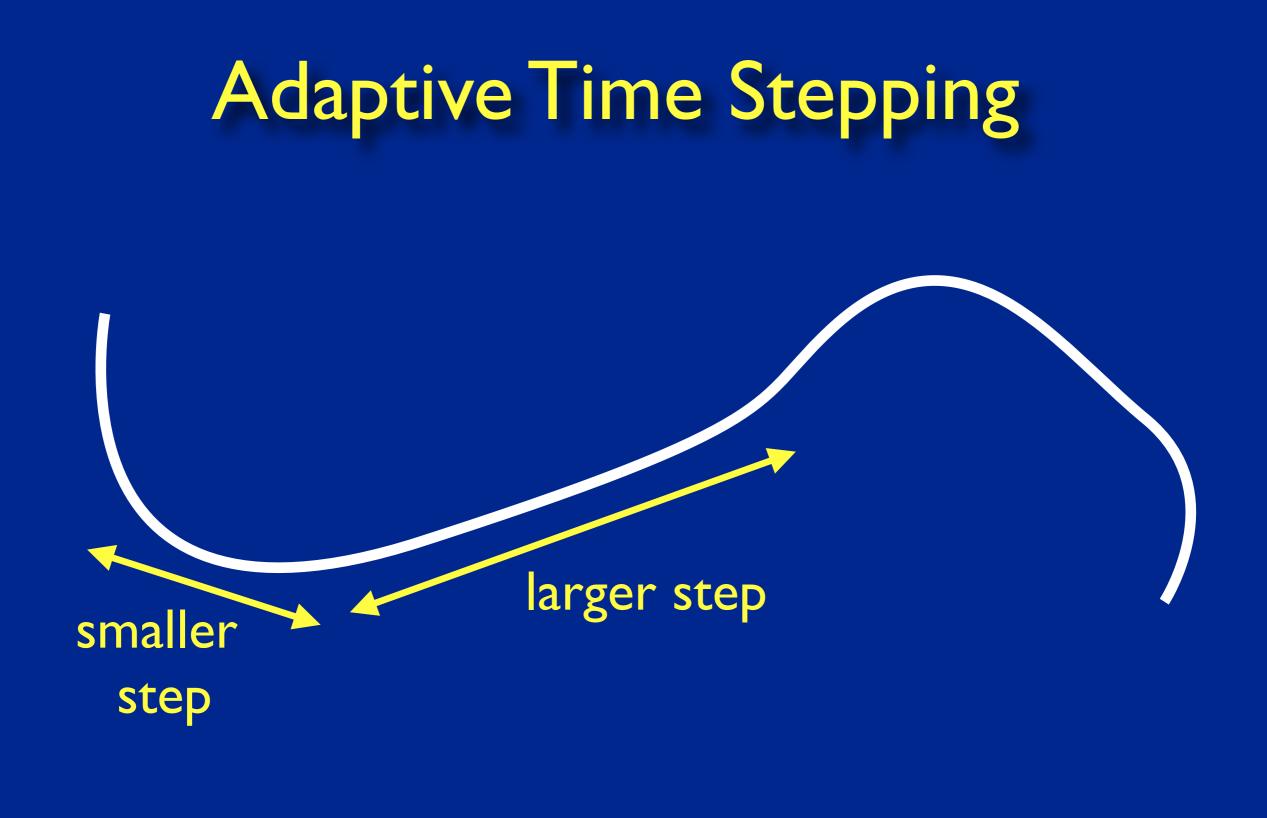


a. Compute an Euler step $\Delta \mathbf{X} = \Delta t \, \mathbf{f}(\mathbf{X}, t)$ b. Evaluate f at the midpoint

$$\mathbf{f}_{\text{mid}} = \mathbf{f}\left(\mathbf{x} + \frac{\Delta \mathbf{x}}{2}, t + \frac{\Delta t}{2}\right)$$

c. Take a step using the midpoint value

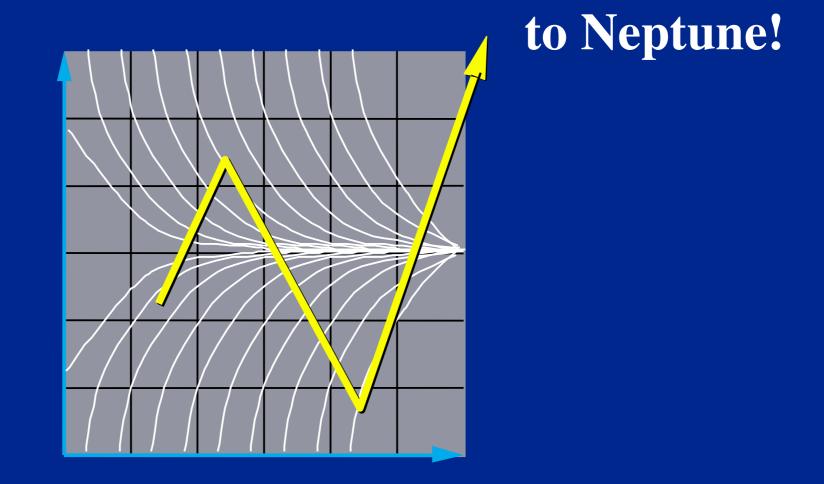
 $\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \,\mathbf{f}_{\text{mid}}$



More methods...

- Euler's method is 1st Order.
- The midpoint method is 2nd Order.
- Just the tip of the iceberg. See *Numerical Recipes* for more.
- Helpful hints:
 - *Don't* use Euler's method (you will anyway.)
 - *Do* use adaptive step size.

Problem II: Instability



Brochu, Batty, Bridson 2010

As unresolved surface features accumulate, they can cause instability.

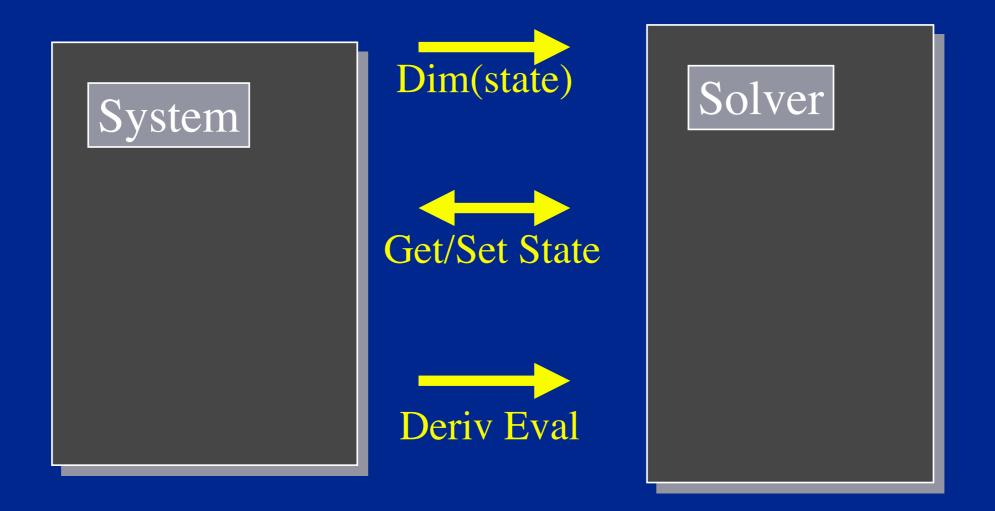
consistency + → convergence stability

see also: Dahlquist equivalence theorem, and Lax equivalence theorem

Modular Implementation

- Generic operations:
 - Get dim(x)
 - Get/set x and t
 - Deriv Eval at current (x,t)
- Write solvers in terms of these.
 - Re-usable solver code.
 - Simplifies model implementation.

Solver Interface



A Code Fragment

