
Shadows

Shadows

for each pixel do
 compute viewing ray
 if (ray hits an object with t in [0, inf]) then
 compute n
 evaluate shading model and set pixel to that color
 else
 set pixel color to the background color

Shadows

for each pixel do
 compute viewing ray
 if (ray hits an object with t in [0, inf]) then
 compute n
 evaluate shading model and set pixel to that color
 else
 set pixel color to the background color

Shadows

for each pixel do
 compute viewing ray
 if (ray hits an object with t in [0, inf]) then
 compute n
 // e.g., phong shading
 for each light

 add light’s ambient component
 compute shadow ray
 if (! shadow ray hits an object)
 add light’s diffuse and specular components

 else
 set pixel color to the background color

Reflections

for each pixel do
 compute viewing ray
 if (ray hits an object with t in [0, inf]) then
 compute n
 evaluate shading model and set pixel to that color
 else
 set pixel color to the background color

Reflections

for each pixel do
 compute viewing ray
 if (ray hits an object with t in [0, inf]) then
 compute n
 evaluate shading model and set pixel to that color
 else
 set pixel color to the background color

Reflections

for each pixel do
 compute viewing ray
 pixel color = cast_ray(viewing ray)

cast_ray:
 if (ray hits an object with t in [0, inf]) then
 compute n
 return color = shade_surface
 else
 return color = to the background color

shade_surface:
 color = ...
 compute reflected ray
 return color = color + k * cast_ray(reflected ray)

Reflections

ray tracer extensions
• refraction
• more complex geometry

• instancing
• CSG

• distribution ray tracing (Cook et al., 1984)
• antialiasing
• soft shadows
• depth of field
• fuzzy reflections
• motion blur

Transparency and Refraction

[marczych/github]

Transparency and Refraction
Snell’s Law

<whiteboard>

n1 sinθ= n2 sinφ

Transparency and Refraction
Snell’s Law

Additional effects
• varying reflectivity
Fresnel equations

• attenuation of light
intensity

Beer’s Law

Object Instancing

instance of circle with 3
transformations applied ray intersection problem in the

two spaces are simple
transforms of each other

Constructive Solid Geometry (CSG)

use set operations to
combine solid shapes

intersection with
composite object

Distribution Ray Tracing

Anti-aliasing
[Shirley and M

arschner]

Soft Shadows
[Shirley and M

arschner]

Soft Focus
[Shirley and M

arschner]

[Shirley and M
arschner]

Fuzzy Reflections
[Shirley and M

arschner]

Motion
Blur

[Shirley and M
arschner]

objects move
while camera

aperture is open

Motion
Blur

[Shirley and M
arschner]

to simulate,
choose random
time within open
aperture interval
for each view ray

Acceleration Structures

Acceleration Structures
[Shirley and M

arschner]

Bounding boxes
[Shirley and M

arschner]

Uniform Spatial Partitioning
[Shirley and M

arschner]

Bounding Volume Hierarchy
[Shirley and M

arschner]

