CS230 : Computer Graphics Lighting and Shading

Tamar Shinar
Computer Science \& Engineering
UC Riverside

Why we need shading

- Suppose we build a model of a sphere using many polygons and color each the same color. We get something like
-But we want

Shading

-Why does the image of a real sphere look like
-Light-material interactions cause each point to have a different color or shade

- Need to consider

Light sources
Material properties
Location of viewer
Surface orientation (normal)

General rendering

- The most general approach is based on physics - using principles such as conservation of energy
- a surface either emits light (e.g., light bulb) or reflects light for other illumination sources, or both
- light interaction with materials is recursive
- the rendering equation is an integral equation describing the limit of this recursive process

Fast local shading models

- the rendering equation can't be solved analytically
- numerical methods aren't fast enough for real-time
- we'll use a local model where shade at a point is independent of other surfaces
- use Phong reflection model
- shading based on local light-material interactions

Local shading model

[Angel and Shreiner]

Global Effects

Light-material interactions

at a surface, light is absorbed, reflected, or transmitted

General light source

Illumination function:

$$
l(x, y, z, \theta, \phi, \lambda)
$$

