Triangles

barycentric coordinates

$$
\mathbf{p}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
$$

barycentric coordinates

$$
\begin{gathered}
\mathbf{p}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a}) \\
\mathbf{p}=(1-\beta-\gamma) \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c} \\
\alpha \equiv 1-\beta-\gamma \\
\mathbf{p}(\alpha, \beta, \gamma)=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c} \\
\alpha+\beta+\gamma=1
\end{gathered}
$$

barycentric coordinates

If \mathbf{p} inside the triangle.

$$
\begin{aligned}
\mathbf{p}(\alpha, \beta, \gamma) & =\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c} \\
0 & <\alpha<1 \\
0 & <\beta<1 \\
0 & <\gamma<1 .
\end{aligned}
$$

barycentric coordinates

If \mathbf{p} on an edge, e.g.,

$$
\mathbf{p}(\alpha, \beta, \gamma)=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}
$$

$$
\begin{aligned}
\beta & =0 \\
\alpha+\gamma & =1
\end{aligned}
$$

barycentric coordinates

$$
\mathbf{p}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}
$$

What are (α, β, γ) ?
<whiteboard>

Triangle rasterization

Which pixels should be used to approximate a triangle?

Which pixels should be used to approximate a triangle?

Use Midpoint Algorithm for edges and fill in?

Which pixels should be used to approximate a triangle?

Use an approach based on barycentric coordinates

We can interpolate attributes using barycentric coordinates

$$
\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}
$$

Gouraud shading
(Gouraud, 1971)
http://jtibble.dyndns.org/graphics/eecs487/eecs487.html

Triangle rasterization algorithm

for all x do
for all y do
compute (α, β, γ) for (\mathbf{x}, \mathbf{y})
if $(\alpha \in[0,1]$ and $\beta \in[0,1]$ and $\gamma \in[0,1])$ then
$\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}$
drawpixel(x, y) with color c

Triangle rasterization algorithm

for all x do
for all y do
compute (α, β, γ) for (\mathbf{x}, \mathbf{y})
if $(\alpha \in[0,1]$ and $\beta \in[0,1]$ and $\gamma \in[0,1])$ then
$\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}$
drawpixel(x, y) with color c

Triangle rasterization algorithm

 use a bounding rectanglefor x in [x_min, $x _m a x$] for y in [y_min, $\left.y _m a x\right]$
compute (α, β, γ) for (\mathbf{x}, \mathbf{y})
if $(\alpha \in[0,1]$ and $\beta \in[0,1]$ and $\gamma \in[0,1])$ then
$\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}$ drawpixel (x, y) with color c

Triangle rasterization algorithm

for x in [$x _m i n, x_{-} \max$]
for y in $\left[\mathrm{y} _\mathrm{min}, \mathrm{y} _\mathrm{max}\right]$

$$
\begin{aligned}
\alpha & =f_{b c}(x, y) / f_{b c}\left(x_{a}, y_{a}\right) \\
\beta & =f_{c a}(x, y) / f_{c a}\left(x_{b}, y_{b}\right) \\
\gamma & =f_{a b}(x, y) / f_{a b}\left(x_{c}, y_{c}\right)
\end{aligned}
$$

$$
\text { if }(\alpha \in[0,1] \text { and } \beta \in[0,1] \text { and } \gamma \in[0,1]) \text { then }
$$

$$
\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}
$$

drawpixel (x, y) with color c
<whiteboard>

Triangle rasterization algorithm

 Optimizations?for x in [x_min, $x _m a x$]
for y in $\left[\mathrm{y} _\mathrm{min}, \mathrm{y} _\mathrm{max}\right]$
$\alpha=f_{b c}(x, y) / f_{b c}\left(x_{a}, y_{a}\right)$
$\beta=f_{c a}(x, y) / f_{c a}\left(x_{b}, y_{b}\right)$
$\gamma=f_{a b}(x, y) / f_{a b}\left(x_{c}, y_{c}\right)$
if $(\alpha \in[0,1]$ and $\beta \in[0,1]$ and $\gamma \in[0,1])$ then
$\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}$
drawpixel (x, y) with color c

Triangle rasterization algorithm

 Optimizations?for \mathbf{x} in $\left[\mathbf{x} \mathbf{x} \mathbf{m i n}, \mathbf{x} _\mathbf{m a x}\right]$
for \mathbf{y} in $\left[\mathbf{y} _\mathbf{m i n}, \mathbf{y} \mathbf{y} \mathbf{m a x}\right]$
$\alpha=f_{b c}(x, y) / f_{b c}\left(x_{a}, y_{a}\right)$
$\beta=f_{c a}(x, y) / f_{c a}\left(x_{b}, y_{b}\right)$
$\gamma=f_{a b}(x, y) / f_{a b}\left(x_{c}, y_{c}\right)$
if $(\alpha \geq 0$ and $\beta \geq 0$ and $\gamma \geq 0)$ then
$\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}$
drawpixel (\mathbf{x}, \mathbf{y}) with color \mathbf{c}

make computation of bary. coords. incremental color can also be computed incrementally don't need to check upper bound

Triangle rasterization issues

Who should fill in shared edge?

Who should fill in shared edge?

Triangle rasterization algorithm

 dealing with shared triangle edgesfor x in [$x _m i n, x _m a x$] for y in [y_min, $\left.y _m a x\right]$

$$
\begin{aligned}
& \alpha=f_{b c}(x, y) / f_{b c}\left(x_{a}, y_{a}\right) \\
& \beta=f_{a c}(x, y) / f_{a c}\left(x_{b}, y_{b}\right) \\
& \gamma=f_{a b}(x, y) / f_{a b}\left(x_{c}, y_{c}\right) \\
& \text { if }(\alpha \geq 0 \text { and } \beta \geq 0 \text { and } \gamma \geq 0) \text { then }
\end{aligned}
$$

$$
\text { if }\left(\alpha>0 \text { or } f_{b c}(\mathbf{a}) f_{b c}(\mathrm{r})>0\right) \text { and } \text { then }
$$

$$
\left(\beta>0 \text { or } f_{c a}(\mathbf{b}) f_{c a}(\mathbf{r})>0\right) \text { and }
$$

$$
\left(\gamma>0 \text { or } f_{a b}(\mathbf{c}) f_{a b}(\mathbf{r})>0\right)
$$

$$
\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}
$$

drawpixel(x,y) with color c

Graphics Pipeline (cont.)

Graphics Pipeline

Transform

"Modelview" Transformation

Project

Clip

Clip against view volume

Clipping against a plane

What's the equation for the plane through \mathbf{q} with normal \mathbf{N} ?

$$
f(\mathbf{p})=\mathbf{N} \cdot(\mathbf{p}-\mathbf{q})=0
$$

Intersection of line and plane

Intersection of line and plane

$$
f(\mathbf{a}) f(\mathbf{b}) \geq 0
$$

$$
f(\mathbf{a}) f(\mathbf{b})<0
$$

Intersection of line and plane

How can we find the intersection point?

<whiteboard>

Clip against view volume

$$
\begin{aligned}
& s=\frac{\mathbf{N} \cdot(\mathbf{q}-\mathbf{c})}{\mathbf{N} \cdot(\mathbf{b}-\mathbf{c})} \\
& t=\frac{\mathbf{N} \cdot(\mathbf{q}-\mathbf{a})}{\mathbf{N} \cdot(\mathbf{b}-\mathbf{a})}
\end{aligned}
$$

need to generate new triangles

Hidden Surface Removal

Occlusion

"painter's algorithm" draw primitives in back-to-front order

[Wikimedia Commons]

Occlusion

"painter's algorithm" draw primitives in back-tofront order

problem:
triangle intersection

Occlusion

problem:

 occlusion cycle
Use a z-buffer for hidden surface removal

test depth on a pixel by pixel basis
red drawn last

Use a z-buffer for hidden surface removal

at each pixel, record distance to the closest object that has been drawn in a depth buffer

Use a z-buffer for hidden surface removal

Use a z-buffer for hidden surface removal

http://www.beyond3d.com/content/articles/4I/

Backface culling: another way to eliminate hidden geometry

Hidden Surface Removal in OpenGL

```
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glEnable(GL_DEPTH_TEST);
glEnable(GL_CULL_FACE);
```

For a perspective transformation, there is more precision in the depth buffer for z-values closer to the near plane

