
Triangles

barycentric coordinates

barycentric coordinates

barycentric coordinates

If p inside the triangle,

barycentric coordinates

If p on an edge, e.g.,

barycentric coordinates

What are ?

<whiteboard>

Triangle rasterization

Which pixels should be used
to approximate a triangle?

Use Midpoint Algorithm for edges and fill in?

Which pixels should be used
to approximate a triangle?

Use an approach based on
barycentric coordinates

Which pixels should be used
to approximate a triangle?

We can interpolate attributes using
barycentric coordinates

http://jtibble.dyndns.org/graphics/eecs487/eecs487.html

Gouraud shading
(Gouraud, 1971)

Triangle rasterization algorithm

for all x do
 for all y do
 compute for (x,y)
 if then

 drawpixel(x,y) with color c

Triangle rasterization algorithm

for all x do
 for all y do
 compute for (x,y)
 if then

 drawpixel(x,y) with color c

Triangle rasterization algorithm

for x in [x_min, x_max]
 for y in [y_min, y_max]
 compute for (x,y)
 if then

 drawpixel(x,y) with color c

use a bounding rectangle

for x in [x_min, x_max]
 for y in [y_min, y_max]

 if then

 drawpixel(x,y) with color c

Triangle rasterization algorithm

<whiteboard>

for x in [x_min, x_max]
 for y in [y_min, y_max]

 if then

 drawpixel(x,y) with color c

Triangle rasterization algorithm
Optimizations?

for x in [x_min, x_max]
 for y in [y_min, y_max]

 if then

 drawpixel(x,y) with color c

Triangle rasterization algorithm
Optimizations?

make computation of bary. coords. incremental
color can also be computed incrementally

don’t need to check upper bound

Triangle rasterization issues

Who should fill in shared edge?

Who should fill in shared edge?

for x in [x_min, x_max]
 for y in [y_min, y_max]

 if then
 if then

 drawpixel(x,y) with color c

Triangle rasterization algorithm
dealing with shared triangle edges

Graphics Pipeline (cont.)

Graphics Pipeline

ff

ff

Transform

Eye
coordinates

“Modelview” Transformation

Object
coordinates

World
coordinates

ViewModel

ff

Project

ff

Clip

Clip against view volume

Clipping against a plane

What’s the equation for
the plane through q

with normal N?

Intersection of line and plane

How can we distinguish
between these cases?

Intersection of line and plane

Intersection of line and plane

How can we find the
intersection point?

<whiteboard>

need to generate new
triangles

Clip against view volume

ff

Hidden Surface Removal

Occlusion

“painter’s algorithm”
draw primitives in

back-to-front order

[Wikimedia Commons]

Occlusion

“painter’s algorithm”
draw primitives in back-to-

front order

problem:
triangle

intersection

Occlusion

“painter’s algorithm”
draw primitives in back-to-

front order

problem:
occlusion cycle

Use a z-buffer for hidden surface
removal

test depth on a pixel by pixel basis

with z-bufferwithout z-buffer

red drawn last

Use a z-buffer for hidden surface
removal

at each pixel, record distance to the closest
object that has been drawn in a depth buffer

with z-bufferwithout z-buffer

Use a z-buffer for hidden surface
removal

with z-bufferwithout z-buffer

Use a z-buffer for hidden surface
removal

http://www.beyond3d.com/content/articles/41/

Backface culling: another way
to eliminate hidden geometry

Hidden Surface Removal in
OpenGL

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

glEnable(GL_DEPTH_TEST);

glEnable(GL_CULL_FACE);

For a perspective transformation, there is more
precision in the depth buffer for z-values closer to
the near plane

