
Rendering approaches

1.image-oriented
foreach pixel ...

2.object-oriented

 foreach object ... geometry image
3D rendering

pipeline

3D graphics pipeline

Vertex processing: coordinate transformations and color

Clipping and primitive assembly: output is a set of primitives

Rasterization: output is a set of fragments for each primitive

Fragment processing: update pixels in the frame buffer

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processorVertices Pixels

Graphics Pipeline
(slides courtesy K. Fatahalian)

Vertex processing

v0

v1

v2

v3

v4

v5

Vertices

Vertices are transformed into “screen space”

Vertex
processor

Clipper and
primitive
assembler

Rasterizer Fragment
processor

Vertices Pixels

Vertex processing

v0

v1

v2

v3

v4

v5

Vertices

Vertices are transformed into “screen space”

EACH VERTEX IS
TRANSFORMED

INDEPENDENTLY

Vertex
processor

Clipper and
primitive
assembler

Rasterizer Fragment
processor

Vertices Pixels

Primitive processing

v0

v1

v2

v3

v4

v5

Vertices

v0

v1

v2

v3

v4

v5

Primitives
(triangles)

Then organized into primitives that are clipped
and culled…

Vertex
processor

Clipper and
primitive
assembler

Rasterizer Fragment
processor

Vertices Pixels

Rasterization

Primitives are rasterized into “pixel fragments”

Fragments

Vertex
processor

Clipper and
primitive
assembler

Rasterizer Fragment
processor

Vertices Pixels

Rasterization

Primitives are rasterized into “pixel fragments”

EACH PRIMITIVE IS RASTERIZED
INDEPENDENTLY

Vertex
processor

Clipper and
primitive
assembler

Rasterizer Fragment
processor

Vertices Pixels

Fragment processing

Shaded fragments

Fragments are shaded to compute a color at each pixel

Vertex
processor

Clipper and
primitive
assembler

Rasterizer Fragment
processor

Vertices Pixels

Fragment processing

EACH FRAGMENT IS PROCESSED
INDEPENDENTLY

Fragments are shaded to compute a color at each pixel

Vertex
processor

Clipper and
primitive
assembler

Rasterizer Fragment
processor

Vertices Pixels

Pixel operations

Pixels

Fragments are blended into the frame buffer at
their pixel locations (z-buffer determines visibility)

Vertex
processor

Clipper and
primitive
assembler

Rasterizer Fragment
processor

Vertices Pixels

Pipeline entities

v0

v1

v2

v3

v4

v5
v0

v1

v2

v3

v4

v5

Vertices Primitives Fragments

Pixels Fragments (shaded)

Rasterization

What is rasterization?

Rasterization is the process of determining
which pixels are “covered” by the primitive

What is rasterization?

input: primitives output: fragments

enumerate the pixels covered by a primitive

interpolate attributes across the primitive

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processorVertices Pixels

Rasterization

Compute integer coordinates for pixels covered by
 the 2D primitives

Algorithms are invoked many, many times and
so must be efficient

Output should be visually pleasing, for example,
lines should have constant density

Obviously, should be able to draw all
possible 2D primitives

Screen coordinates

Line Representation

Implicit Line Equation

<whiteboard>

Implicit Line Equation

decision variable, d

Implicit Line Equation

decision variable, d

Implicit Line Equation

decision variable, d

Implicit Line Equation

decision variable, d

Line Drawing

Which pixels should be used
to approximate a line?

Draw the thinnest possible
line that has no gaps

Line drawing algorithm

y = y0
for x = x0 to x1 do
 draw(x,y)
 if (<condition>) then
 y = y+1

(case: 0 < m <= 1)

•move from left to right
•choose between

(x+1,y) and (x+1,y+1)

Line drawing algorithm

y = y0
for x = x0 to x1 do
 draw(x,y)
 if (<condition>) then
 y = y+1

(case: 0 < m <= 1)

•move from left to right
•choose between

(x+1,y) and (x+1,y+1)

Use the midpoint between the
two pixels to choose

Use the midpoint between the
two pixels to choose

Use the midpoint between the
two pixels to choose

Use the midpoint between the
two pixels to choose

implicit line equation:

evaluate f at midpoint:
<whiteboard>

Use the midpoint between the
two pixels to choose

implicit line equation:

evaluate f at midpoint:

Line drawing algorithm
(case: 0 < m <= 1)

y = y0
for x = x0 to x1 do
 draw(x,y)
 if () then
 y = y+1

We can make the Midpoint
Algorithm more efficient

y = y0
for x = x0 to x1 do
 draw(x,y)
 if () then
 y = y+1

We can make the Midpoint
Algorithm more efficient

by making it incremental!

We can make the Midpoint
Algorithm more efficient

We can make the Midpoint
Algorithm more efficient

We can make the Midpoint
Algorithm more efficient

y = y0
d = f(x0+1,y0+1/2)
for x = x0 to x1 do
 draw(x,y)
 if (d<0) then
 y = y+1
 d = d+(y0-y1)+(x1-x0)
 else
 d = d+(y0-y1)

Adapt Midpoint Algorithm for
other cases

case: 0 < m <= 1

Adapt Midpoint Algorithm for
other cases

case: -1 <= m < 0

Adapt Midpoint Algorithm for
other cases

case: 1 <= m
or m <= -1

Line drawing references

• the algorithm we just described is the Midpoint
Algorithm (Pitteway, 1967), (van Aken and Novak, 1985)

• draws the same lines as the Bresenham Line Algorithm
(Bresenham, 1965)

Triangles

barycentric coordinates

barycentric coordinates

barycentric coordinates

barycentric coordinates

barycentric coordinates

barycentric coordinates

What are ?

<whiteboard>

