Rendering approaches

I eimage-oriented

foreach pixel ...

«Object-oriented

foreach object ...

R

—

3D rendering
pipeline

3D graphics pipeline

, Vertex
Vertices —> brocessor

Fragment .
e = Pixels

Vertex processing: coordinate transformations and color
Clipping and primitive assembly: output is a set of primitives
Rasterization: output is a set of fragments for each primitive

Fragment processing: update pixels in the frame buffer

Graphics Pipeline

(slides courtesy K. Fatahalian)

Clipper and
VerticeS* Vertex * primitive W * Fragment * Pixels
~ processor

assembler

Vertex processing

Vertices are transformed into “screen space”

v4

Vertices

Clipper and —
Vertices primitive Rasterizer * g * Pixels
processor
assem bler

Vertex processing

Vertices are transformed into “screen space”

- " EACH VERTEX IS
. TRANSFORMED
y INDEPENDENTLY

Vertices

Vertices * Vertex
processor

processor

Primitive processing

Then organized into primitives that are clipped
and culled...

®
vO
® v5
o
v4
Py v4 “
v3 ® ® .
Vertices Primitives

(triangles)

Clipper and
Vertices* Vertex * primitive *-* Fragment * Pixels
processor processor

assembler

Rasterization

Primitives are rasterized into “pixel fragments”

A

//

-~

<

\.\

Fragments

Clipper and
Vertices* Vertex * primitive *-* Fragment * Pixels
processor processor

Rasterization

Primitives are rasterized into “pixel fragments”

A

-~

//

7

<

\.\

N

EACH PRIMITIVE IS RASTERIZED

INDEPENDENTLY

Vert Clipper and

assembler

Fragment processing

Fragments are shaded to compute a color at each pixel

Shaded fragments

Vert Clipper and

assembler

Fragment processing

Fragments are shaded to compute a color at each pixel

EACH FRAGMENT IS PROCESSED
INDEPENDENTLY

- Clipper and

assembler

Pixel operations

Fragments are blended into the frame buffer at
their pixel locations (z-buffer determines visibility)

Pixels

Pipeline entities

vO vO

® V4

Vertices

Fragments (shaded)

v2
?
V5
* L S
\ [® V4
<t
V3‘ 3V1
Primitives Fragments

Pixels

Rasterization

What is rasterization?

Rasterization is the process of determining
which pixels are “covered” by the primitive

What is rasterization?

Vertex ' Clipper and ' ' Fragment '
processor aps.:?n;tl;\lleer Rasterizer processor Pixels

input: primitives output: fragments
enumerate the pixels covered by a primitive

interpolate attributes across the primitive

Rasterization

Compute integer coordinates for pixels covered by
the 2D primitives

Algorithms are invoked many, many times and
so must be efficient

Output should be visually pleasing, for example,
lines should have constant density

Obviously, should be able to draw all
possible 2D primitives

Screen coordinates

)
~O®

ofy | o) | @

Line Representation

Math Review

« 2D math for lines

How do we determine the
equation of the line?

(X1, Y1)

(X2, Y2)

Math Review

» 2D math for lines
Slope-Intercept formula for a line

Slope = (Y2 — Y1)/(X2 — X1)
(Y -Y1)/(X - X1)

Solving For Y

(X2, Y2)

(X, Y)

(X1, Y1)

Y=[Y2-Y1)/(X2-X1)]X
+ [-(Y2-Y1)/[(X2 - X1)]X1+Y1or
Y=mX+Db

Math Review

 Explicit (functional) representation
y = f(x)

y is the dependent, x independent variable

Find value of y from value of x

Example, for a line: for a circle:
y=mx+Db X% + y? =r?

Math Review

* Parametric Representation

X =X(U), y =y(u)

where new parameter u (or often t) determines the value
of x and y (and possibly z) for each point

X,y treated the same, axis invariant

Math Review

Parametric formula for a line

(X2, Y2)
X=X1+ t(X2-X1)
Y=Y1+ t(Y2-Y1) (X, Y)
for parameter t from O to 1 (X1, Y1)

Therefore, when
t=0 we get (X1,Y1)
t=1 we get (X2,Y2)

Varying t gives the points along the line segment

Implicit Line Equation

f(X) =N (X~ Xg) =0

<whiteboard>

Implicit Line Equation

decision variable, d

f(X)=N-(X-Xp) =d

d >0
d <0
d=20

Implicit Line Equation

decision variable, d

f(X)=N-(X-Xp) =d

Implicit Line Equation

decision variable, d

f(X)=N-(X-Xp) =d

d >0

d=20

Implicit Line Equation

decision variable, d

f(X)=N-(X-Xp) =d

d >0
d <0

Line Drawing

WWhich pixels should be used
to approximate a line!?

/./

1=

Draw the thinnest possible
line that has no gaps

A

DDA algorithm for lines

Parametric Lines: the DDA algorithm
(digital differential analyzer)

Yisy =MX;q +B
=m(X;+AX)+B AX = (X4 - X))
=y, + m(AXx) <- must round to find int

If we increment by 1 pixel in X, we turn on
[xi, Round(yi)] or same for Y if m > 1

15

Scan conversion for lines

DDA includes Round(); and this is fairly slow
For Fast Lines, we want to do only integer math +,-
We do this using the Midpoint Algorithm

To do this, lets look at lines with y-intercept B
and with slope between 0 and 1:

y=(dy/dx)x+B ==>
f(x,y) = (dy)x - (dx)y + B(dx) =0

Removes the division => slope treated as 2 integers

16

Line drawing algorithm

(case:0 <m <= |)

y =y0
for x = x0 to x| do
draw(x,y)

if (<condition>) then
y =yt

*move from left to right
*choose between
(x+1,y) and (x+1,y+1)

A

Line drawing algorithm

(case:0 <m <= |)

y =y0

for x = x0 to x| do

draw(x,y)

if (<condition>) then

y =yt

*move from left to right

echoose between
(x+1,y) and (x+1,y+1)

Use the midpoint between the
two pixels to choose

Use the midpoint between the
two pixels to choose

Use the midpoint between the
two pixels to choose

Use the midpoint between the
two pixels to choose

implicit line equation:
f(X) =N (X~ Xo) =0

<whiteboard>
evaluate f at midpoint:

1

Use the midpoint between the
two pixels to choose

implicit line equation:

f(X)=N- (X~ Xg) =0

evaluate f at midpoint:

f(:v,y+%) > 0

Line drawing algorithm

(case:0 <m <= |)

y =y0 o
for x = x0 to x| do o
draw(x,y) |
if (f(x+1.4+)<0) then
y =y+l

VVe can make the Midpoint
Algorithm more efficient

y =y0
for x = x0 to x| do

draw(x,y)

if (f(x+1.4+)<0) then

y =y+l

VVe can make the Midpoint
Algorithm more efficient

©

by making it incremental!

flz,y) = (Yo —y1)z + (21 — xo)y + Toy1 — 10 =0

flx+1,9) = f(z,y) + (Yo — y1)

f(:l?+1,y+1):f(x,y)+(yo—y1)+(x1—x0)

VVe can make the Midpoint
Algorithm more efficient

1

flx+1y+5)>0

2 -ﬂ’:(

flz,y) = (Yo —y1)z + (21 — xo)y + Toy1 — 10 =0

flx+1,9) = f(z,y) + (Yo — y1)

f(56+1,y+1):f(x,y)+(yo—y1)+(x1—x0)

VVe can make the Midpoint
Algorithm more efficient

1

f(x—l—l,y—|—§)<0 o:/o._c B

flz,y) = (Yo —y1)z + (21 — xo)y + Toy1 — 10 =0

flx+1,9) = f(z,y) + (Yo — y1)

f(x+17y+1):f(xvy)+(y0_y1)+($1_$0)

VVe can make the Midpoint
Algorithm more efficient

y =y0
d = f(x0+1,y0+1/2)

for x = x0 to x| do -H’(

dI”aW(X,)’) flx+1,y) = f(z,y) + (yo — y1)
if (d<0) then

y = y+l

d = d+(y0-y |)+(x1-x0) -
else ol
d = d+(y0-y) -ﬂf

fx+1Ly+1)= f(x,y) + (yo — y1) + (z1 — 7o)

Adapt Midpoint Algorithm for
other cases

case:0 < m <= |

. pae

Adapt Midpoint Algorithm for
other cases

case: -l <=m<90

aan, =

Adapt Midpoint Algorithm for
other cases

case: | <=m
orm<= -|

N
o
s

Line drawing references

® the algorithm we just described is the Midpoint
Algorithm (Pitteway, 1967), (van Aken and Novak, 1985)

® draws the same lines as the Bresenham Line Algorithm
(Bresenham, 1965)

Triangles

barycentric coordinates

barycentric coordinates

barycentric coordinates- -~

-
-
-
-
-
-
/
-
-
-
-
-
-
Y =2
-
-
-
-
-
-
Y =1
-
-
-
-
-

-

barycentric coordinates .

Ve

-
-
-

/ Ve

barycentric coordinates- - .

barycentric coordinates

p=caa+ b+ ~c

What are (o, 3,7) !

<whiteboard> a

