Rendering approaches

I. .image-oriented foreach pixel ...

2.object-oriented foreach object ...

3D graphics pipeline

Vertex processing: coordinate transformations and color
Clipping and primitive assembly: output is a set of primitives
Rasterization: output is a set of fragments for each primitive
Fragment processing: update pixels in the frame buffer

Graphics Pipeline
 (slides courtesy K. Fatahalian)

Vertex processing
Vertices are transformed into "screen space"

Vertices

Vertex processing
Vertices are transformed into "screen space"

Vertices

Primitive processing

Then organized into primitives that are clipped and culled...

Vertices
Primitives
(triangles)

Rasterization

Primitives are rasterized into "pixel fragments"

Rasterization

Primitives are rasterized into "pixel fragments"

Fragment processing

Fragments are shaded to compute a color at each pixel

Fragment processing

Fragments are shaded to compute a color at each pixel

Pixel operations

Fragments are blended into the frame buffer at their pixel locations (z-buffer determines visibility)

Pixels

Pipeline entities

Vertices

Primitives

Fragments

Fragments (shaded)

Pixels

Rasterization

What is rasterization?

Rasterization is the process of determining which pixels are "covered" by the primitive

What is rasterization?

input: primitives output: fragments
enumerate the pixels covered by a primitive interpolate attributes across the primitive

Rasterization

Compute integer coordinates for pixels covered by the 2 D primitives

Algorithms are invoked many, many times and so must be efficient

Output should be visually pleasing, for example, lines should have constant density

Obviously, should be able to draw all possible 2D primitives

Screen coordinates

Line Representation

Math Review

-2D math for lines

How do we determine the equation of the line?

Math Review

- 2D math for lines

Slope-Intercept formula for a line

Slope $=(Y 2-Y 1) /(X 2-X 1)$ $(Y-Y 1) /(X-X 1)$

Solving For Y
$Y=[(Y 2-Y 1) /(X 2-X 1)] X$
$+[-(\mathrm{Y} 2-\mathrm{Y} 1) /(\mathrm{X} 2-\mathrm{X} 1)] \mathrm{X} 1+\mathrm{Y} 1$ or
$Y=m X+b$

Math Review

-Explicit (functional) representation $y=f(x)$
y is the dependent, x independent variable

Find value of y from value of x

Example, for a line:
$y=m x+b$
for a circle:

$$
x^{2}+y^{2}=r^{2}
$$

Math Review

- Parametric Representation

$$
x=x(u), y=y(u)
$$

where new parameter u (or often t) determines the value of x and y (and possibly z) for each point
x, y treated the same, axis invariant

Math Review

Parametric formula for a line
$X=X 1+t(X 2-X 1)$
$Y=Y 1+t(Y 2-Y 1)$
for parameter t from 0 to 1

Therefore, when

$$
\begin{aligned}
& t=0 \text { we get }(X 1, Y 1) \\
& t=1 \text { we get }(X 2, Y 2)
\end{aligned}
$$

Varying t gives the points along the line segment

Implicit Line Equation

$$
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=0
$$

<whiteboard>

Implicit Line Equation

decision variable, d

$$
\begin{gathered}
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=d \\
d>0 \\
d<0 \\
d=0
\end{gathered}
$$

Implicit Line Equation

decision variable, d

$$
\begin{gathered}
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=d \\
d>0 \\
d<0 \\
d=0
\end{gathered}
$$

Implicit Line Equation

decision variable, d

$$
\begin{gathered}
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=d \\
d>0 \\
d<0 \\
d=0
\end{gathered}
$$

Implicit Line Equation

decision variable, d

$$
\begin{gathered}
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=d \\
d>0 \\
d<0 \\
d=0
\end{gathered}
$$

Line Drawing

Which pixels should be used to approximate a line?

Draw the thinnest possible line that has no gaps

DDA algorithm for lines

Parametric Lines: the DDA algorithm
(digital differential analyzer)

$$
\begin{aligned}
Y_{i+1} & =m x_{i+1}+B \\
& =m\left(x_{i}+\Delta x\right)+B \quad \Delta x=\left(x_{i+1}-x_{i}\right) \\
& =y_{i}+m(\Delta x) \quad<- \text { must round to find int }
\end{aligned}
$$

If we increment by 1 pixel in X, we turn on
[xi, Round(yi)] or same for Y if $m>1$

Scan conversion for lines

DDA includes Round (); and this is fairly slow
For Fast Lines, we want to do only integer math +,-
We do this using the Midpoint Algorithm
To do this, lets look at lines with y-intercept B and with slope between 0 and 1 :

$$
\begin{aligned}
& y=(d y / d x) x+B \Longrightarrow \\
& f(x, y)=(d y) x-(d x) y+B(d x)=0
\end{aligned}
$$

Removes the division => slope treated as $\mathbf{2}$ integers

Line drawing algorithm (case: $0<m<=1$)

$$
\begin{aligned}
& \begin{array}{l}
y=y 0 \\
\text { for } x=x 0 \text { to } x I \text { do } \\
\quad \operatorname{draw}(x, y) \\
\text { if (<condition }>) \text { then } \\
y=y+1
\end{array}
\end{aligned}
$$

-move from left to right -choose between $(x+1, y)$ and $(x+1, y+1)$

Line drawing algorithm (case: $0<m<=1$)

$$
\begin{aligned}
& y=y 0 \\
& \text { for } x=x 0 \text { to } x I \text { do } \\
& \begin{array}{l}
\operatorname{draw}(x, y) \\
\text { if }(<c o n d i t i o n>) \text { then } \\
y=y+1
\end{array}
\end{aligned}
$$

-move from left to right

-choose between

$$
(x+1, y) \text { and }(x+1, y+1)
$$

Use the midpoint between the two pixels to choose

Use the midpoint between the two pixels to choose

Use the midpoint between the two pixels to choose

Use the midpoint between the two pixels to choose

implicit line equation:

$$
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=0
$$

<whiteboard>
evaluate f at midpoint:

$$
f\left(x, y+\frac{1}{2}\right) ? 0
$$

Use the midpoint between the two pixels to choose

implicit line equation:

$$
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=0
$$

evaluate f at midpoint:

$$
f\left(x, y+\frac{1}{2}\right)>0
$$

Line drawing algorithm (case: $0<m<=$ I)

$$
\begin{aligned}
& \mathbf{y}=\mathbf{y} 0 \\
& \text { for } \mathbf{x}=\mathbf{x} \mathbf{0} \text { to } \mathbf{x I} \text { do } \\
& \quad \operatorname{draw}(\mathbf{x}, \mathbf{y}) \\
& \text { if }\left(f\left(x+1, y+\frac{1}{2}\right)<0\right) \text { then } \\
& \quad \mathbf{y}=\mathbf{y}+\mathbf{l}
\end{aligned}
$$

We can make the Midpoint Algorithm more efficient

$$
\begin{aligned}
& y=y 0 \\
& \text { for } x=x 0 \text { to } x I d o \\
& \text { draw(} \mathrm{x}, \mathrm{y} \text {) } \\
& \text { if }\left(f\left(x+1, y+\frac{1}{2}\right)<0\right) \text { then } \\
& y=y+1
\end{aligned}
$$

We can make the Midpoint Algorithm more efficient

by making it incremental!

$$
\begin{gathered}
f(x, y)=\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1}-x_{1} y_{0}=0 \\
f(x+1, y)=f(x, y)+\left(y_{0}-y_{1}\right) \\
f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
\end{gathered}
$$

We can make the Midpoint Algorithm more efficient

$$
f\left(x+1, y+\frac{1}{2}\right)>0
$$

$$
f(x, y)=\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1}-x_{1} y_{0}=0
$$

$$
f(x+1, y)=f(x, y)+\left(y_{0}-y_{1}\right)
$$

$$
f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
$$

We can make the Midpoint Algorithm more efficient

$$
f\left(x+1, y+\frac{1}{2}\right)<0
$$

$$
f(x, y)=\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1}-x_{1} y_{0}=0
$$

$$
f(x+1, y)=f(x, y)+\left(y_{0}-y_{1}\right)
$$

$$
f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
$$

We can make the Midpoint Algorithm more efficient

$$
\begin{aligned}
& y=y 0 \\
& d=f(x 0+1, y 0+I / 2) \\
& \text { for } x=x 0 \text { to } x I \text { do } \\
& d r a w(x, y) \\
& \text { if }(d<0) \text { then } \\
& y=y+1 \\
& d=d+(y 0-y I)+(x \mid-x 0) \\
& \text { else } \\
& \quad d=d+(y 0-y l)
\end{aligned}
$$

$$
f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
$$

Adapt Midpoint Algorithm for other cases

case: $0<m<=$ |

Adapt Midpoint Algorithm for other cases

$$
\text { case: }-\mathrm{l}<=\mathrm{m}<0
$$

Adapt Midpoint Algorithm for other cases

Line drawing references

- the algorithm we just described is the Midpoint Algorithm (Pitteway, 1967), (van Aken and Novak, 1985)
- draws the same lines as the Bresenham Line Algorithm (Bresenham, 1965)

Triangles

barycentric coordinates

barycentric coordinates

barycentric coordinates,

barycentric coordinates

$$
\mathbf{p}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}
$$

What are (α, β, γ) ?
<whiteboard>

