
CS230 : Computer Graphics
Lecture 6: Lighting and Shading

Tamar Shinar
Computer Science & Engineering

UC Riverside

Notes

• HBC, Chapter 17

• Angel, Chapter 5

• some slides courtesy of V. Zordan

3

Why we need shading

•Suppose we build a model of a sphere
using many polygons and color each the
same color. We get something like

•But we want

The more realistically lit sphere has gradations in its color that give us a sense of its three-
dimensionality

4

Shading

•Why does the image of a real sphere look like

•Light-material interactions cause each point to
have a different color or shade

•Need to consider
- Light sources
- Material properties
- Location of viewer
- Surface orientation (normal)

We are going to develop a local lighting model by which we can shade a point independently of the other surfaces in the scene
our goal is to add this to a fast graphics pipeline architecture

General rendering

• The most general approach is based on
physics - using principles such as
conservation of energy

• a surface either emits light (e.g., light
bulb) or reflects light for other
illumination sources, or both

• light interaction with materials is
recursive

• the rendering equation is an integral
equation describing the limit of this
recursive process

Angel and Shreiner

http://en.wikipedia.org/wiki/Rendering_equation

Fast local shading models

• the rendering equation can’t be solved analytically

• numerical methods aren’t fast enough for real-time

• for our fast graphics rendering pipeline, we’ll use a local
model where shade at a point is independent of other
surfaces

• use Phong reflection model

• shading based on local light-material interactions

some approximations to the rendering equation include radiosity and ray tracing, but they
are still not as fast as the local model in the pipeline architecture

Local shading model

direct
light

reflected
light

direct light is the color of the light source
reflected light is the color of the light light reflected from the object surface
for rendering, color of light source and reflected light determines the colors of pixels in the
frame buffer
only need to consider the rays that leave the source and reach the viewers eye

8

Global Effects

translucent surface

shadow

multiple reflection

Light-material interactions
at a surface, light is absorbed, reflected, or transmitted

specular diffuse translucent

specular: shiny, smooth surface. light scattered in narrow range close to angle of reflection
e.g., mirror is perfectly specular
diffuse: matte, rough surface. light scattered in all directions
translucent: allows some light to pass through object. refraction: e.g., glass or water

General light source

Illumination function:

integrate contributions from
all sources to shade the point

\vec{x} = (x,y,z)
\vec{omega} = theta, phi

Idealized light sources

• Ambient light

• Point light

• Spotlight

• distant (directional) light

luminance:

source will be described through three component intensity or luminance
decompose into red, green, blue channels
e.g., use the red component of source to calculate red component of image
use a single scalar equations - each equation applied independently to each channel

Ambient light source

• achieve a uniform light
level

• no black shadows

• ambient light intensity
at each point in the
scene

use scalar I_a to denote any component of \vec{I}_a
ambient light is the same everywhere
but different surfaces will reflect it differently

Point light source

illumination intensity at p:

- use scalar I(\vec{p}_0) to denote any of three components
- points sources alone aren’t too realistic looking -- tend to be high contrast
- most real-world scenes have large light sources
- add ambient light to mitigate high contrast

Point light source
Point light sources alone aren’t too realistic
- add ambient light to mitigate high
contrast

Most real-world scenes
have large light sources

- umbra is fully in shadow, penumbra is partially in shadow

Point light source

Point light sources alone aren’t too realistic
- drop off intensity more slowly

Most real-world scenes
have large light sources

In practice, we also replace the 1/d^2 term by something that falls off more slowly

Spotlights

Intensity

Spotlights

Intensity

add an exponent for greater control
final result is like point light but modified by this cone

Distant light source

characterized
by direction

most shading calculations require direction from the surface point to the light source position
if the light source is very far, the direction vectors don’t change
e.g., sun
characterized by direction rather than position

Phong Reflection Model

Brad Smith, Wikimedia Commons

•efficient, reasonably realistic
•3 components
•4 vectors

- l to light source
- n surface normal
- v to viewer
- r perfect reflector (function of n and l)

Phong Reflection Model

Brad Smith, Wikimedia Commons

for each light source and each color channel:

illumination reflectancecolor intensity

Ambient reflection

ambient
reflection
coefficient

different ambient
coefficients for
different colors

e.g., white light shining on the object will be reflected differently in red, green, blue channels
e.g., more red and blue reflection here

Diffuse reflection

http://emmybella.wordpress.com/the-laws-of-reflection/

e.g., paper, unfinished wood, unpolished stone

http://emmybella.wordpress.com/the-laws-of-reflection/
http://emmybella.wordpress.com/the-laws-of-reflection/

Diffuse reflection

diffuse
reflection
coefficient

direct: maximum
light intensity

indirect: reduced
light intensity

Lambert’s cosine law

- the light is reduced by cos of angle
 - this is because same amount of light is spread over larger area when light comes in at an
angle

Specular reflection

Ideal reflector:
•angle of incidence=
angle of reflection
•viewer position matters

e.g., white light shining on the object will be reflected differently in red, green, blue channels
e.g., more red and blue reflection here

Specular reflection

Specular surface:

specular reflection is strongest in mirror reflection direction

specular
highlight

area of specular highlight depends on how smooth the surface is

Specular reflection

specular reflection is strongest in mirror reflection direction
drops off with increasing angle

specular
reflection
coefficient

shininess
coefficient

Phong proposed this model

Specular reflection

shininess
coefficient

metal
plastic

Phong proposed this model
clamp to 0 -- avoid negative values
the fuzzy highlight was too big without an exponent

Phong Reflection Model

Brad Smith, Wikimedia Commons

Phong Reflection Model

Brad Smith, Wikimedia Commons

Alternative: Blinn-Phong Model

h
halfway vector

replace v.r with h.n
this way we donʼt have to recompute r, which depends on n
h does not depend on n
saves a lot especially for directional lights and constant viewing direction

p
 10: eggshell

100: shiny
1000: glossy

 10000: mirror-like

Shading Polygonal Geomtery

Constant (“Flat”) Shading

• Simplest approach

• apply illumination model once for each polygon

• valid when:

• light source at

• viewer at

• object is actually faceted

If light source or viewer is not at infty, need heuristic for picking color - e.g., first vertex, or
polygon center
- does not produce variations in gradation

Mach Band Effect

This effect makes flat shading seem even worse

35

Shading Polygons

•Polygons often approximate curve surfaces but
are inherently flat

•Consider polygonal ‘sphere’
•Want to smooth the rough
 face of each surface facet
•How do we fix this?

 even if we applied the lighting model at each pixel, we would still get faceted appearance

36

Smooth Shading

•We can simply find a new
normal at each vertex for
a sphere

•Easy for sphere model
-If centered at origin n = p

•Results in smoother
shading

•Note silhouette edge

37

Vertex Normals

•The sphere example is not general
because we knew the normal at each
vertex analytically

•For polygonal meshes, Gouraud 1971
 proposed we use the average of normals
around a mesh vertex

38

Interpolating Normals

• Must renormalize

39

Interpolating Normals

• Must renormalize

40

Interpolating Normals

• Must renormalize

41

Gouraud Smoothing

-AKA: intensity interpolation shading
-Used in OpenGL
-Find vertex normals
-Apply Phong light model at each vertex
-Interpolate vertex shades across each polygon

42

Phong Smoothing

 - Not the Phong lighting
model!
-AKA: normal-vector
interpolation shading

-Find vertex normals
-Interpolate vertex normals
across edges and then
across polygon

-Find shades using normals
across polygons

Wikimedia Commons

interpolate normals and make an independent shading calculation
Note: Phong shading requires that the lighting model be applied to each fragment - hence, per-fragment shading

Comparison

Flat Gouraud Phong

- Phong interpolation looks smoother -- can see edges on the Gouraud model
- but Phong is a lot more work
- both Phong and Gouraud require vertex normals
- both Phong and Gouraud leave silhouettes

44

Comparison

•If the polygon mesh approximates surfaces with a
high curvatures, Phong smoothing may look
smooth when Gouraud shows edges

•Phong smoothing requires much more work than
Gouraud smoothing

•Both need data structures to represent meshes
so we can obtain vertex normals

•Both leave the silhouette jagged

Problems with Interpolated
Shading

• Polygonal silhouette

• Perspective distortion

• Orientation dependence

• Unrepresentative surface normals

Foley, van Dam, Feiner, Hughes
Foley, van Dam, Feiner, Hughes

Shading and Lighting in
OpenGL

47

Material/Shading

•A simple model that can be computed rapidly
•Includes three components

-Diffuse
-Specular
-Ambient

•Uses four vectors
-To source, I
-To viewer, v
-Normal, n
-Perfect reflector, r

48

Steps in OpenGL shading

1. Enable shading and select model
2. Specify lights
3. Specify material properties
4. Specify normals

49

Enabling Shading

•Shading calculations are enabled by
-glEnable(GL_LIGHTING)

-Once lighting is enabled, glColor() ignored
•Polygon shading is turned on as:
-glShadeModel(GL_SMOOTH) or

-glShadeModel(GL_FLAT)

•Must enable light sources individually
-glEnable(GL_LIGHTi) i=0,1…..

•Choose lighting parameters

50

Defining a Light Source

•For each light source, we can set an RGB for the
diffuse, specular, and ambient parts, and the
position

GLfloat diffuse0[]={1.0, 0.0, 0.0, 1.0};
GLfloat ambient0[]={1.0, 0.0, 0.0, 1.0};
GLfloat specular0[]={1.0, 0.0, 0.0, 1.0};
GLfloat light0_pos[]={1.0, 2.0, 3,0, 1.0};

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);

glLightv(GL_LIGHT0, GL_POSITION, light0_pos);
glLightv(GL_LIGHT0, GL_AMBIENT, ambient0);
glLightv(GL_LIGHT0, GL_DIFFUSE, diffuse0);

glLightv(GL_LIGHT0, GL_SPECULAR, specular0);

51

Material Properties

•Material properties are also part of the OpenGL
state and match the terms in the Phong model

•Set by glMaterialv()

GLfloat ambient[] = {0.2, 0.2, 0.2, 1.0};
GLfloat diffuse[] = {1.0, 0.8, 0.0, 1.0};
GLfloat specular[] = {1.0, 1.0, 1.0, 1.0};

glMaterialf(GL_FRONT, GL_AMBIENT, ambient);
glMaterialf(GL_FRONT, GL_DIFFUSE, diffuse);

glMaterialf(GL_FRONT, GL_SPECULAR, specular);

