CS230 : Computer Graphics Lecture 5: Perspective Transformations and Hidden Surfaces

Tamar Shinar
Computer Science \& Engineering UC Riverside

Perspective Projection (continued)

Perspective Projection

$$
P=\left(\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -f n \\
0 & 0 & 1 & 0
\end{array}\right)
$$

$M_{\text {per }}=M_{\text {orth }} P \quad$ <whiteboard>

This does not preserve \mathbf{z} completely, but it preserves $\mathbf{z}=\mathbf{n}, \mathbf{f}$ and is monotone (preserves ordering) with respect to z

One-Point Perspective

- One principal face parallel to projection plane
- One vanishing point for cube

Two-Point Perspective

- On principal direction parallel to projection plane
-Two vanishing points for cube

Three-Point Perspective

- No principal face parallel to projection plane
-Three vanishing points for cube

Hidden Surface Removal

Occlusion

"painter's algorithm"
draw primitives in back-to-front order

Occlusion

problem: triangle intersection

Occlusion

problem: occlusion cycle

Use a z-buffer for hidden surface removal

at each pixel, record distance to the closest object that has been drawn in a depth buffer

Use a z-buffer for hidden surface removal

at each pixel, record distance to the closest object that has been drawn in a depth buffer

- assume both spheres of the same size, red drawn last

Use a z-buffer for hidden surface removal

done in the fragment blending phase

- each fragment must carry a depth

Use a z-buffer for hidden surface removal

http://www.beyond3d.com/content/articles/4I/

Backface culling: another way to eliminate hidden geometry

Hidden Surface Removal in OpenGL

```
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glEnable(GL_DEPTH_TEST);
glEnable(GL_CULL_FACE);
```

Note: For a perspective transformation, there is more in the depth buffer for z-values closer to the near plane

Clipping

Clipping against a plane

What's the equation for the plane through \mathbf{q} with normal \mathbf{N} ?

- q

implicit line equation: $f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=0$
 $$
\mathbf{X}_{0}=\left(x_{0}, y_{0}\right)
$$

Clipping against a plane

What's the equation for the plane through \mathbf{q} with normal \mathbf{N} ?

$$
f(\mathbf{p})=?=0
$$

- q
<whiteboard>

Clipping against a plane

What's the equation for the plane through \mathbf{q} with normal \mathbf{N} ?

$$
\begin{aligned}
& f(\mathbf{p})=\mathbf{N} \cdot(\mathbf{p}-\mathbf{q})=0 \\
& f(\mathbf{p})=\mathbf{N} \cdot \mathbf{p}+D=0
\end{aligned}
$$

Intersection of line and plane

Intersection of line and plane

$$
f(\mathbf{a}) f(\mathbf{b}) \geq 0
$$

$$
f(\mathbf{a}) f(\mathbf{b})<0
$$

Intersection of line and plane

How can we find the intersection point?

<whiteboard>

Clipping against the viewing volume

Orthographic projection viewing volume

Perspective projection viewing volume

Clipping against the viewing volume

$$
\begin{gathered}
\mathbf{p}(t) \\
t=\frac{\mathbf{N} \cdot \mathbf{a}+D}{\mathbf{N} \cdot(\mathbf{a}-\mathbf{b})}
\end{gathered}
$$

N is particularly simple for the orthographic viewing volume in NDC

Clipping against the viewing volume

$$
\begin{aligned}
& s=\frac{\mathbf{N} \cdot \mathbf{c}+d}{\mathbf{N} \cdot(\mathbf{c}-\mathbf{b})} \\
& t=\frac{\mathbf{N} \cdot \mathbf{a}+D}{\mathbf{N} \cdot(\mathbf{a}-\mathbf{b})}
\end{aligned}
$$

N is particularly simple for the orthographic viewing volume in NDC

Clipping against the viewing volume

$$
\begin{aligned}
& s=\frac{\mathbf{N} \cdot \mathbf{c}+d}{\mathbf{N} \cdot(\mathbf{c}-\mathbf{b})} \\
& t=\frac{\mathbf{N} \cdot \mathbf{a}+D}{\mathbf{N} \cdot(\mathbf{a}-\mathbf{b})}
\end{aligned}
$$

need to generate new triangles

N is particularly simple for the orthographic viewing volume in NDC

Clipping

-Removing the unseen geometry
-Direct (brute-force) solution - solve silmultaneous equations for intersections of lines/edges at window edges

A point or vertex is visible if
xleft $<\mathrm{x}<$ xright and
ybot $<$ y $<$ ytop

Clipping lines

Pipeline, clip each edge of the window separately:

(a)

Clipping polygons

Clip the vertices that are outside of the window and create new vertices at window border

Result is still a single polygon but may have more vertices and an odd shape

Clipping polygons

Clipping polygons

Bounding box - surrounds each polygon

Cohen-Sutherland Algorithm

-Region Checks: Trivially reject or accept for clipping

- Good for large or small windows (all is in or out of window, respectively)
-Each vertex is assigned an 4-bit outcode

1001	1000	1010
0001	0000	0010
00101	0100	0110

A line can be trivially accepted if both endpoints have an outcode of 0000 .

A line can be trivially rejected if any of the same two bits in the outcodes are both equal to 1 (both endpoints are left, right, above, below the window)

Clipping 3D

Adds far and near
clipping planes for
3D viewing volume

