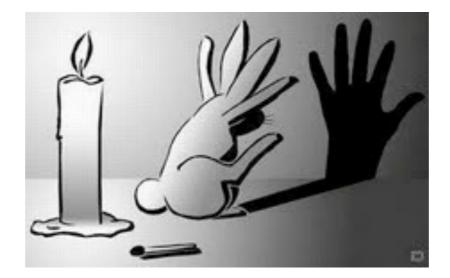
CS230 : Computer Graphics

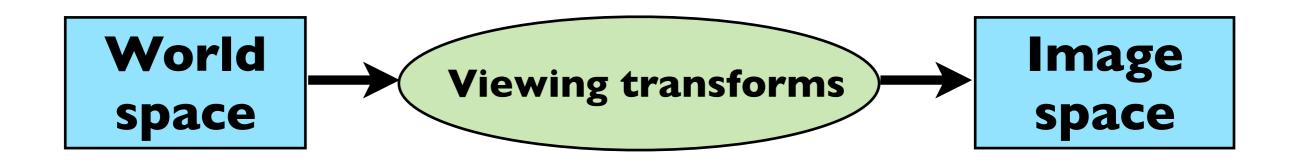
Lecture 4: Viewing Transformations

Tamar Shinar Computer Science & Engineering UC Riverside

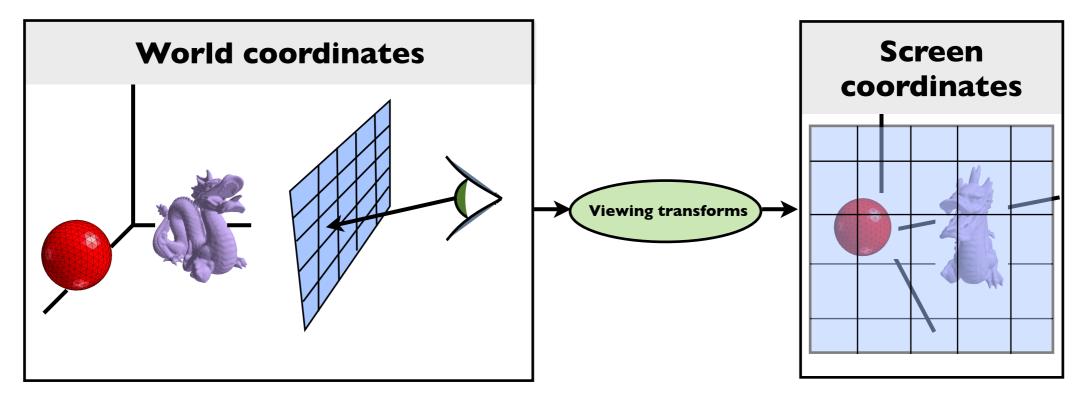
Viewing Transformations



Viewing transformations

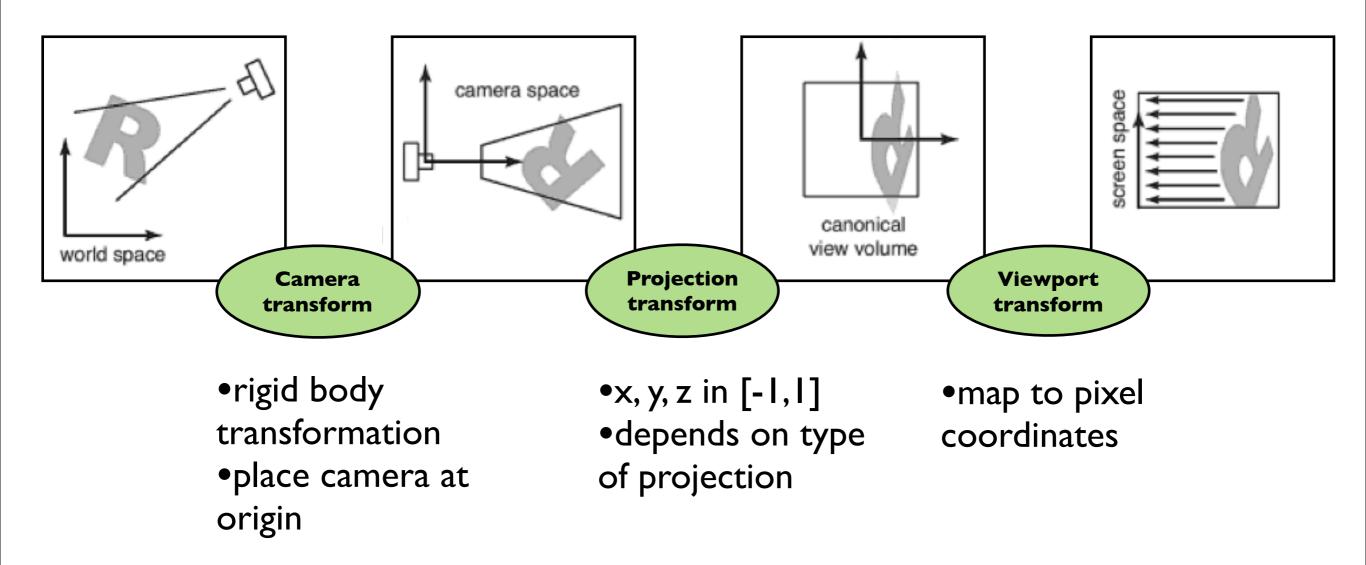


 Move objects from their 3D locations to their positions in a 2D view



The viewing transformation also project any pixels viewing ray back to the pixel's position in **image space**

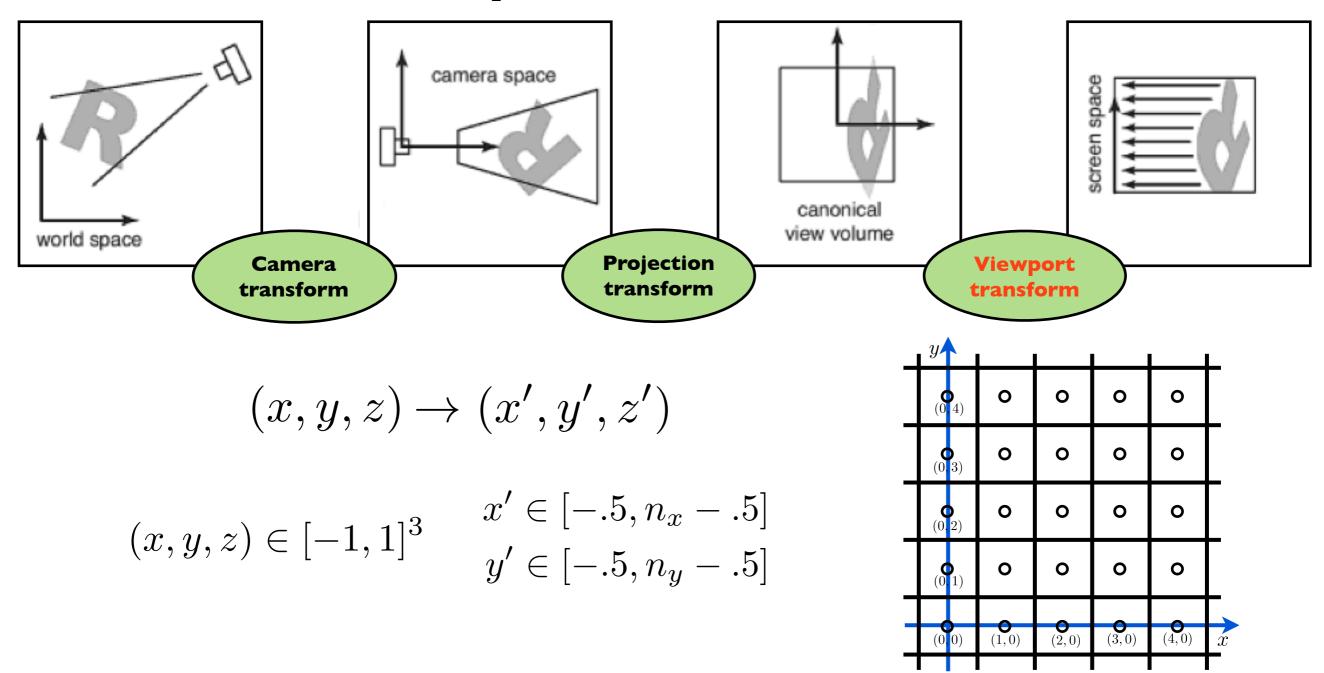
Decomposition of viewing transforms



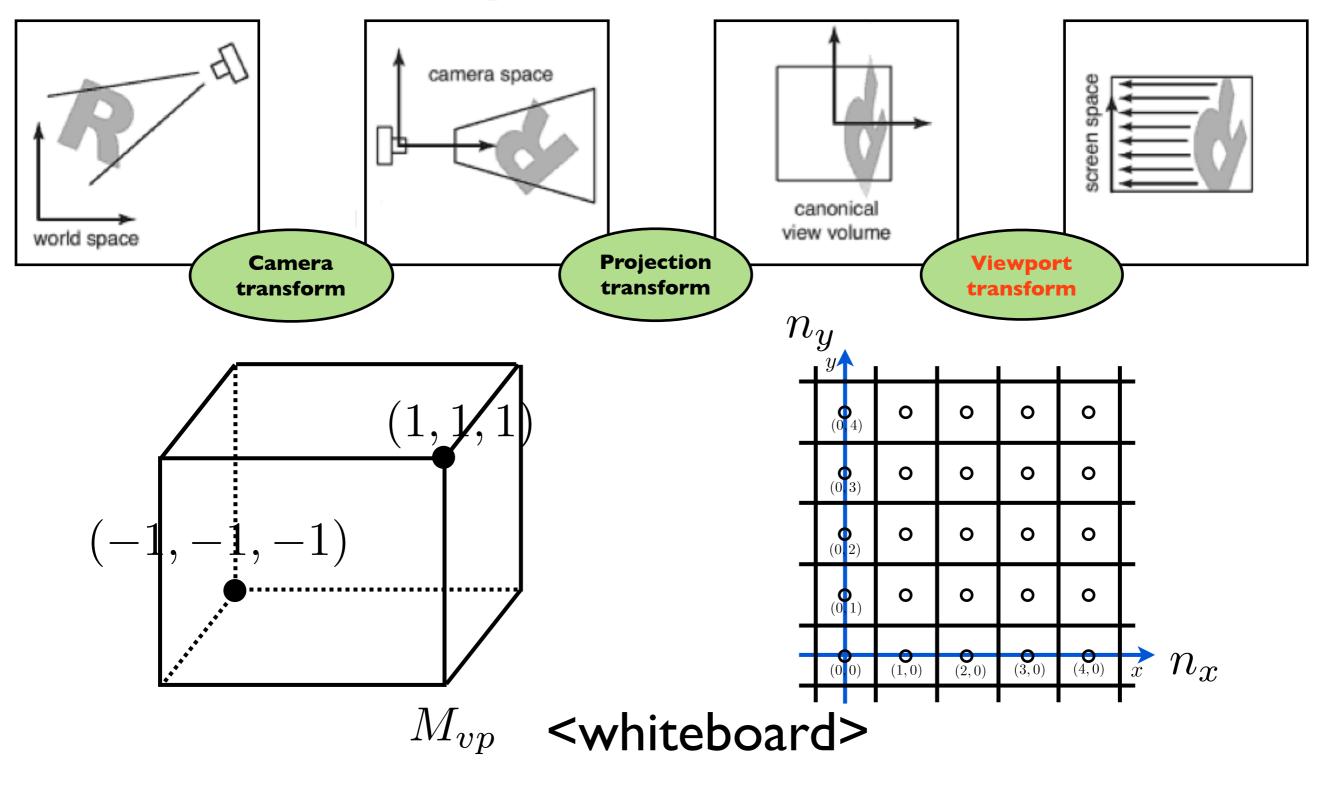
Viewing transforms depend on: camera position and orientation, type of projection, field of view, image resolution

there are several names for these spaces: "camera space" = "eye space", "canonical view volume" = "clip space" = "normalized device coordinates", "screen space = pixel coordinates" and for the transforms: "camera transformation" = "viewing transformation"

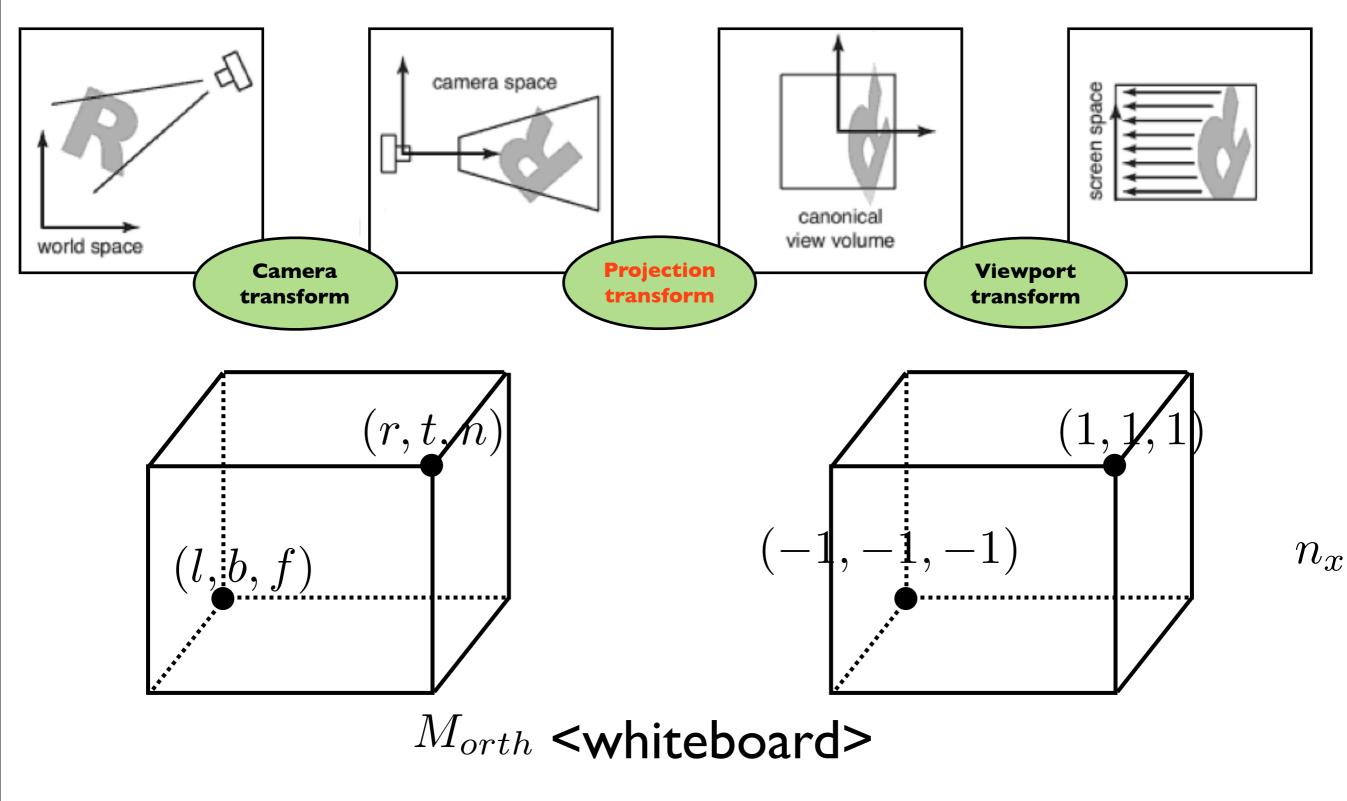
Viewport transform

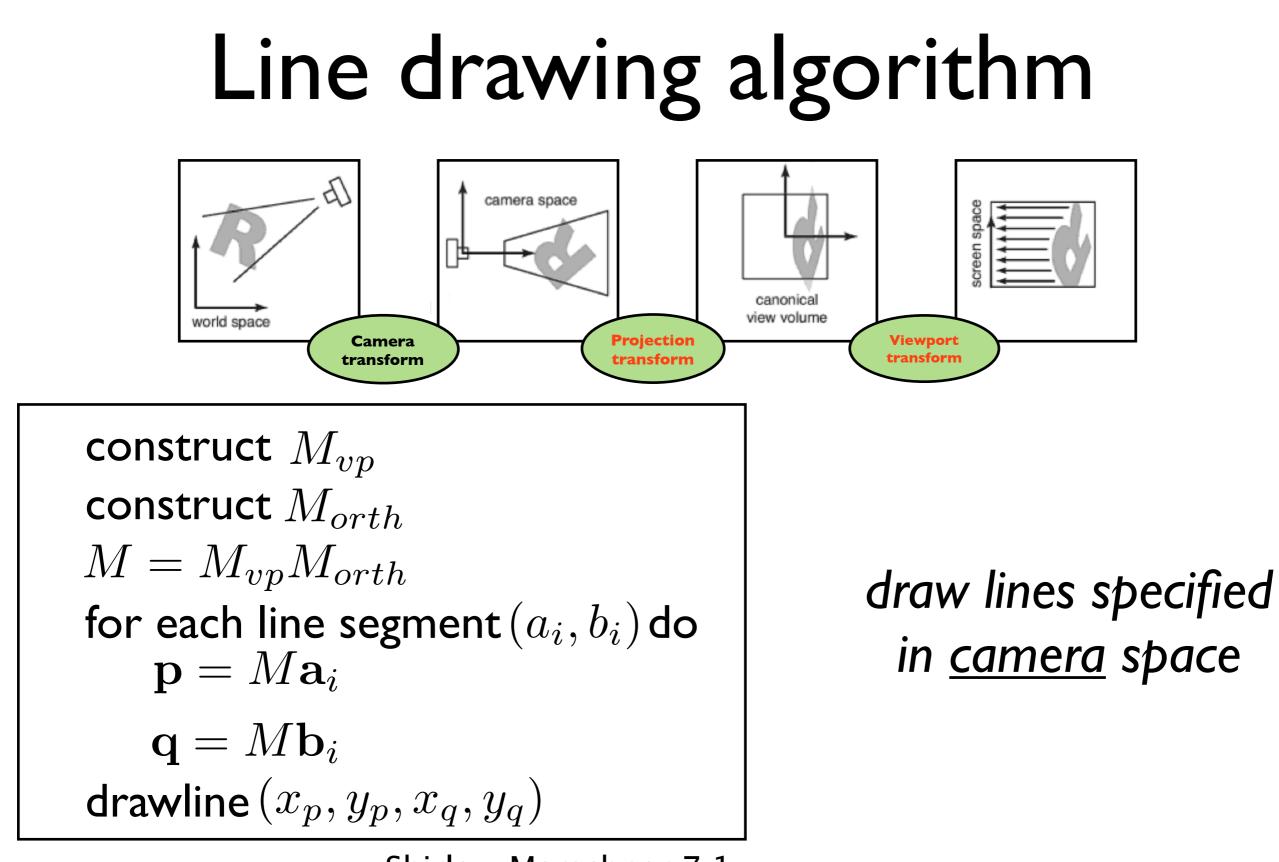


Viewport transform

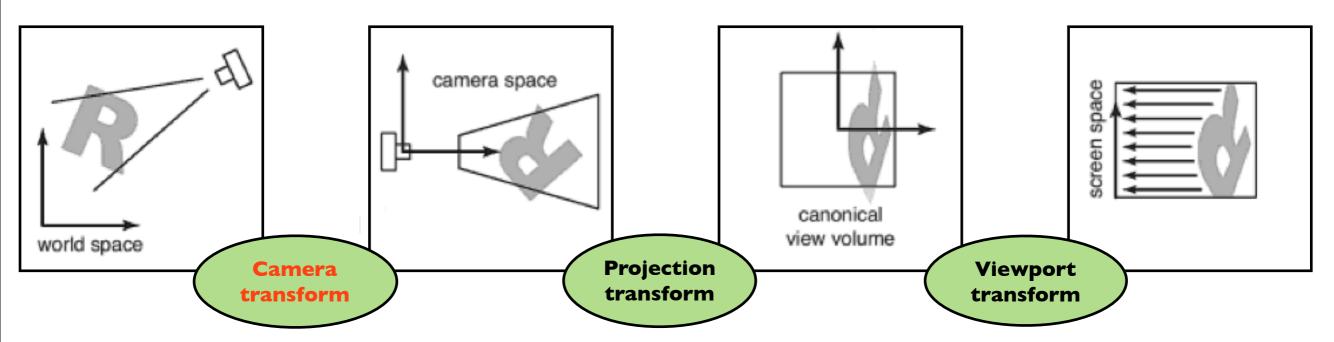


Orthographic Projection Transform



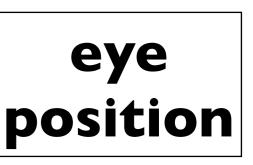


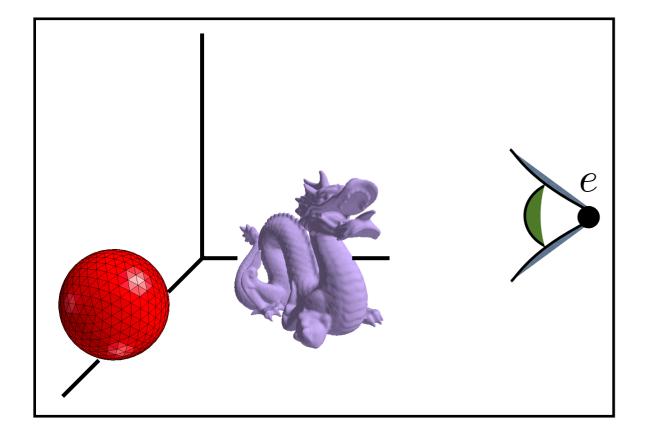
Shirley, Marschner 7.1

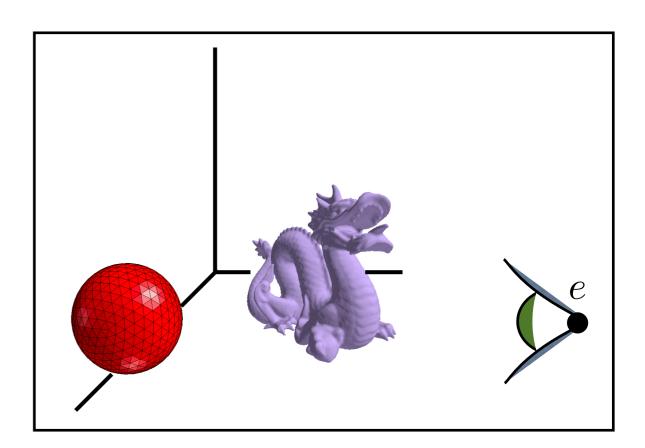


How do we specify the camera configuration? (orthogonal case)

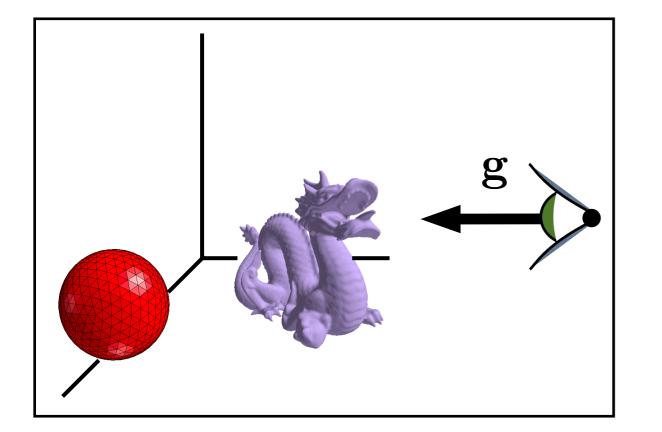
How do we specify the camera configuration?

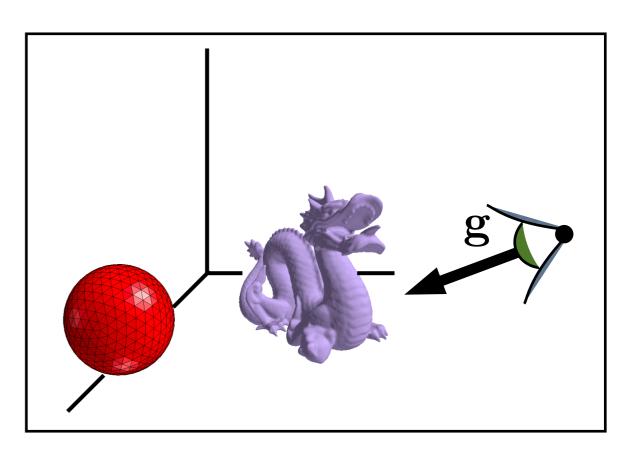




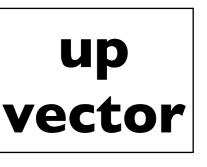


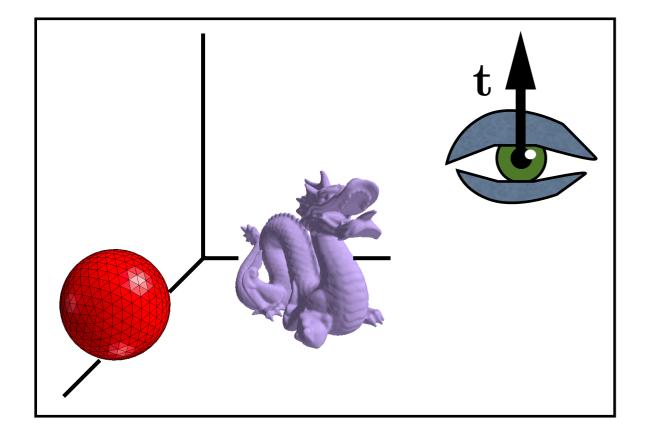
How do we specify the camera configuration? **gaze direction**

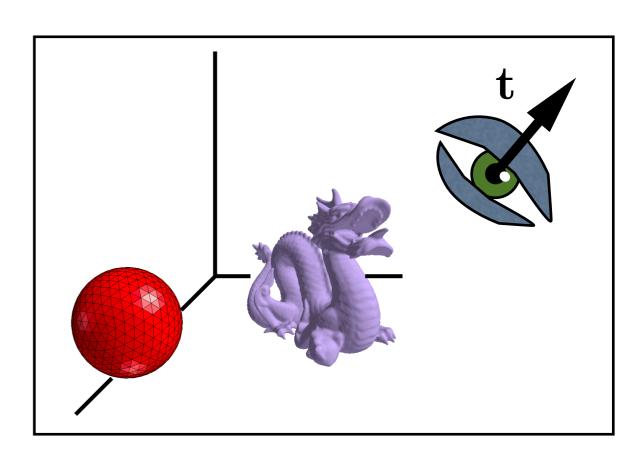




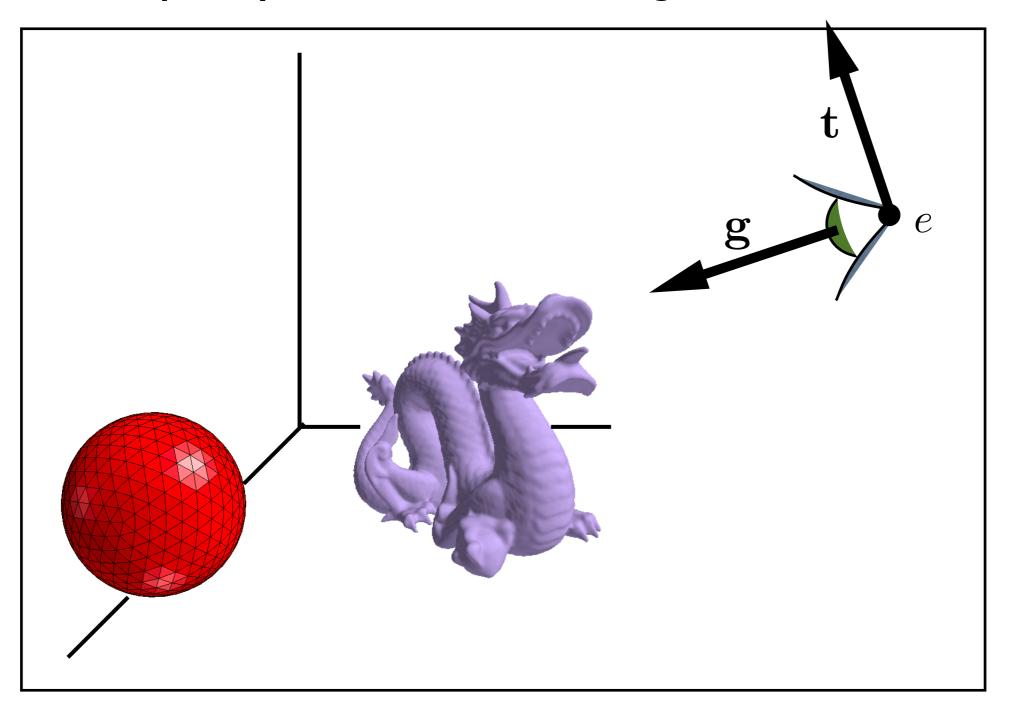
How do we specify the camera configuration?

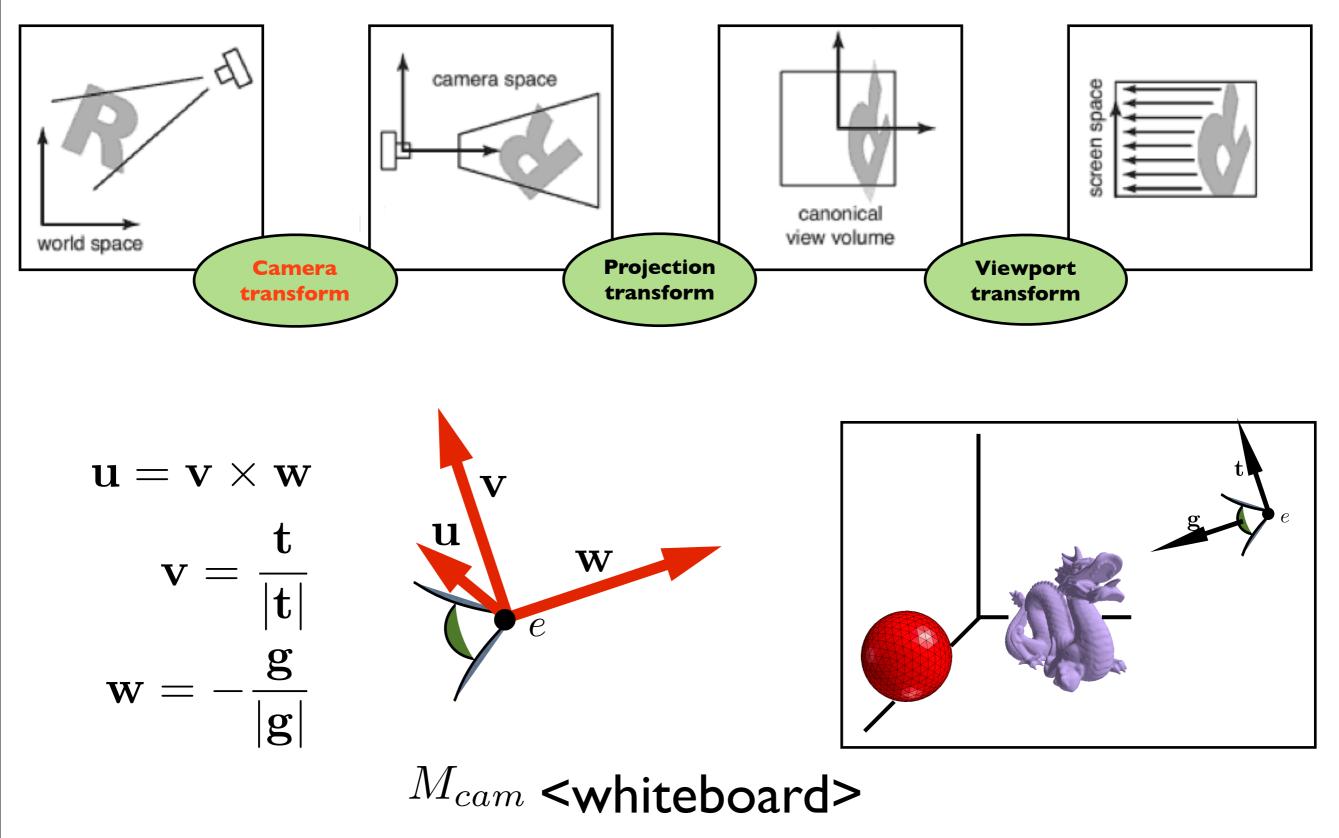


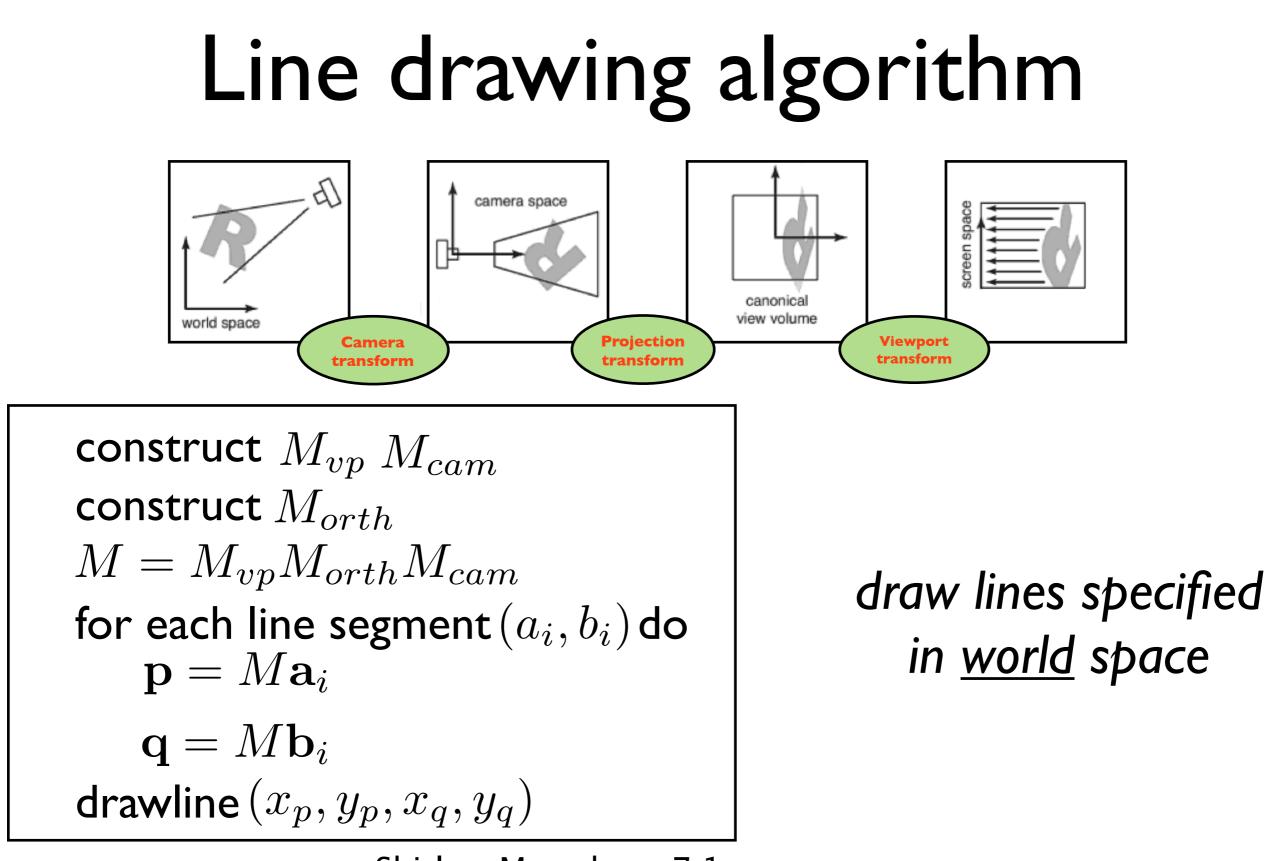




How do we specify the camera configuration?

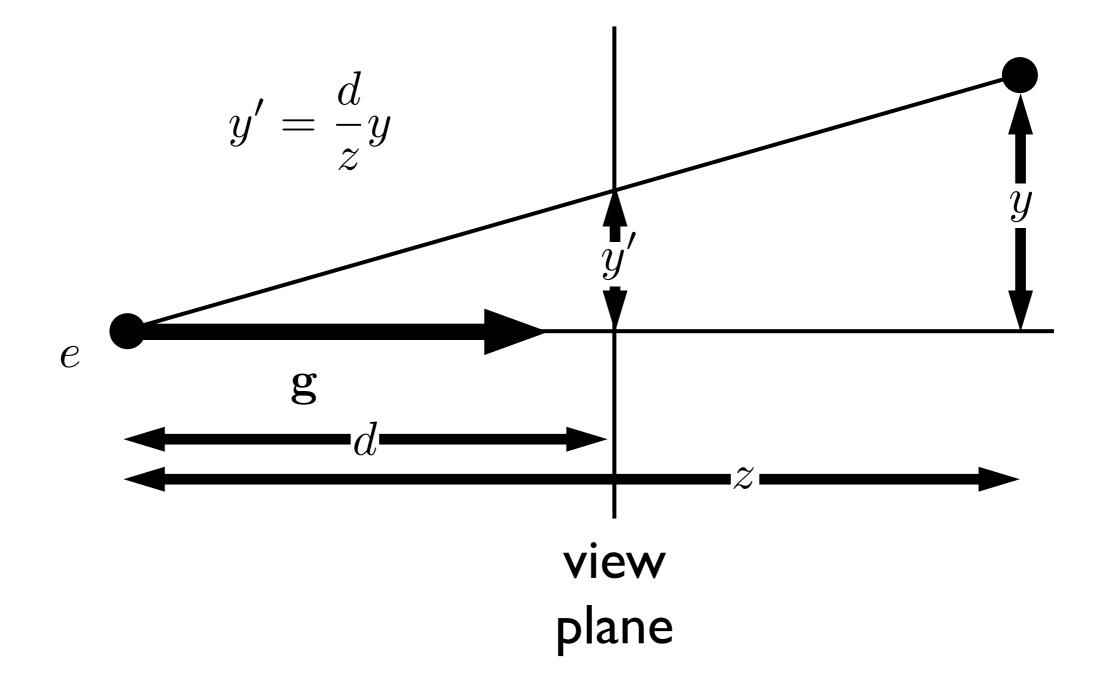






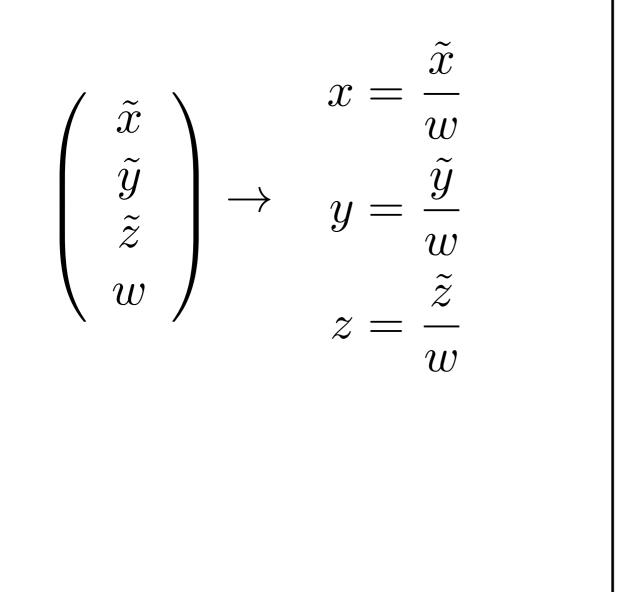
Shirley, Marschner 7.1

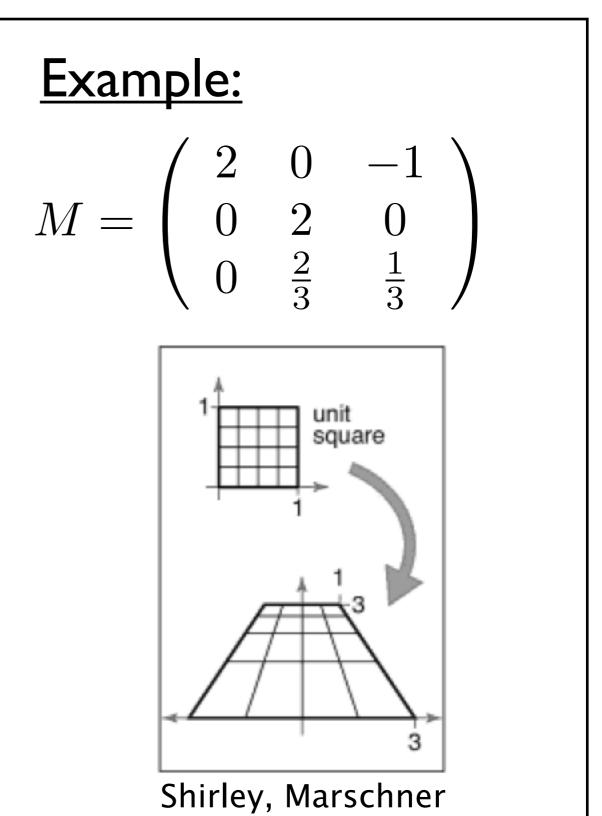
Projective Transformations



note that the height, **y'**, in **camera space** is proportion to y and inversely proportion to z. We want to be able to specify such a transformation with our **4x4 matrix machinery**

Projective Transformations



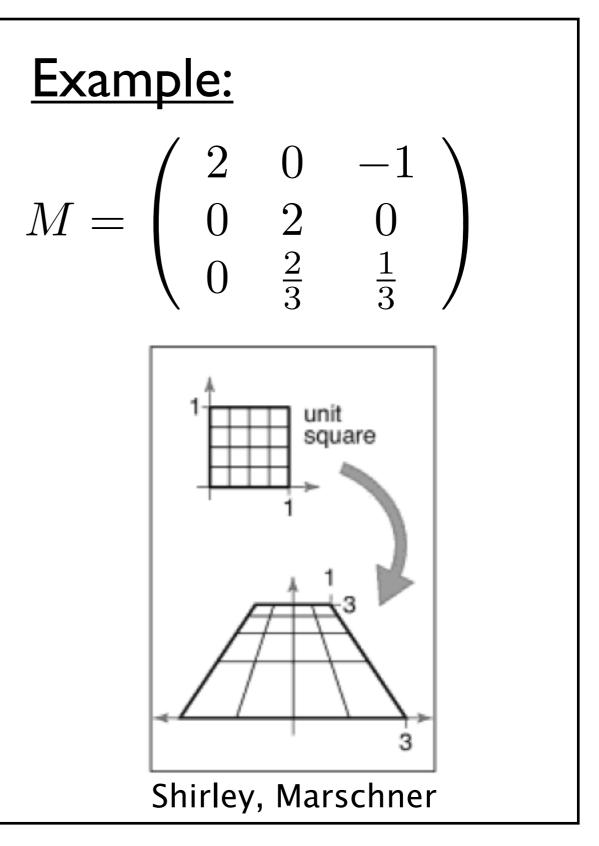


Note: this makes our homogeneous representation for unique only up to a constant

Projective Transformations

$$\begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \\ w \end{pmatrix} \rightarrow \qquad \begin{aligned} y &= \frac{\tilde{x}}{w} \\ y &= \frac{\tilde{y}}{w} \\ z &= \frac{\tilde{z}}{w} \end{aligned}$$

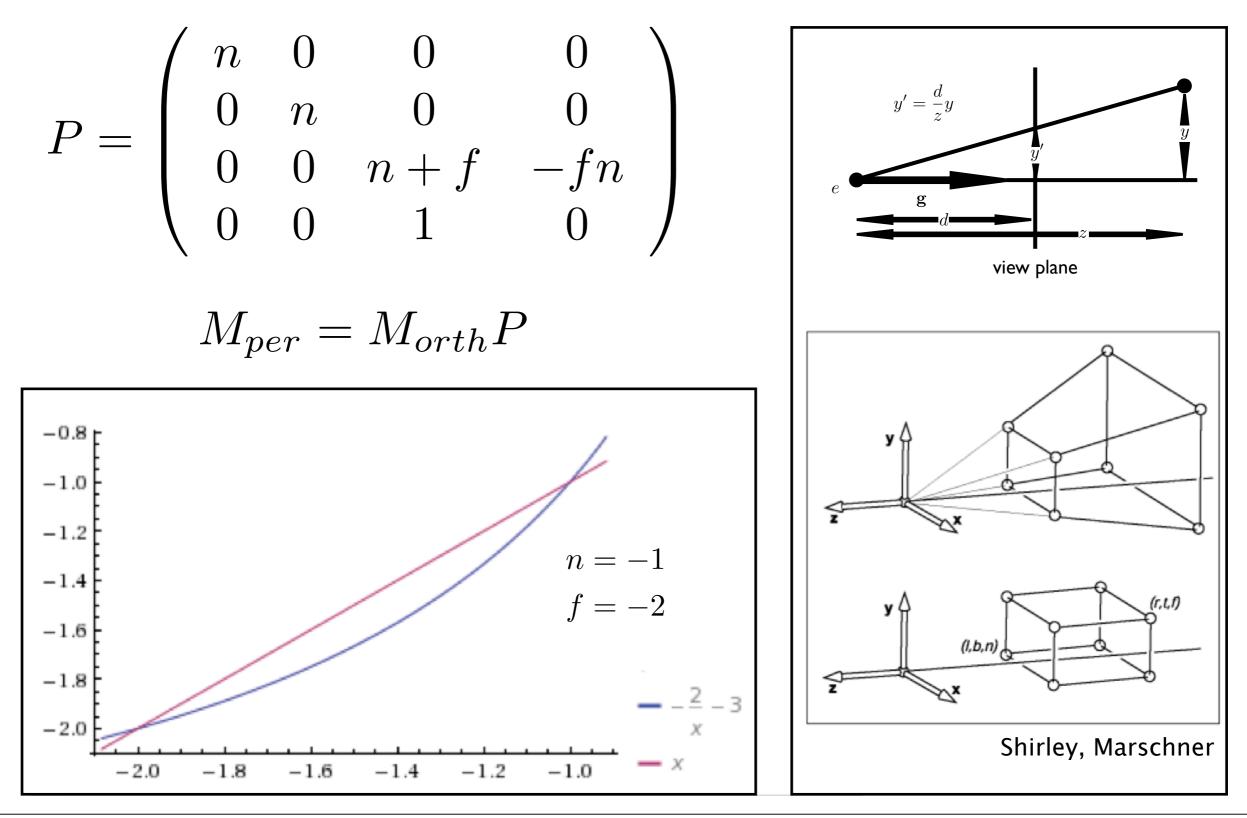
We can now implement perspective projection!



Perspective Projection

note that the height, **y'**, in **camera space** is proportion to y and inversely proportion to z. We want to be able to specify such a transformation with our **4x4 matrix machinery**

Perspective Projection



This does not preserve z completely, but it preserves z = n, f and is monotone (preserves ordering) with respect to z

