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Primitives and Attributes
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Choice of primitives

• Which primitives should an API contain?

➡small set - supported by hardware

• lots of primitives - convenient for user

GPUs are optimized for 
points, lines, and triangles

Other geometric shapes will be built out of these



Two classes of primitives

 Angel and Shreiner

Geometric : points, lines, polygons
Image : arrays of pixels



Point and line segment types

 Angel and Shreiner



Polygons
• Multi-sided planar element composed of edges and 

vertices.
• Vertices (singular vertex) are represented by points 
• Edges connect vertices as line segments

E1

E3 E2

(x1,y1)

(x2,y2)

(x3,y3)



Valid polygons

• Simple

• Convex

• Flat
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OpenGL polygons

• Only triangles are supported (in latest versions)

GL_POINTS GL_TRIANGLES

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN



Other polygons

triangulation

triangulation
as long as triangles are not collinear, they will be simple, flat, and convex -- easy to render



Sample attributes

• Color         glClearColor(1.0, 1.0, 1.0, 1.0);

• Point size    glPointSize(2.0);

• Line width   glLineWidth(3.0);



Coordinate systems 
and transformations



Viewing transformations



Eye
coordinates

Viewing transformations

Object
coordinates

World
coordinates

ViewModel

- viewing coordinates are based on the position and orientation of a the virtual camera
- 2D projection of the scene
- normalized device coordinates
- finally we get device or screen coordinates
- modeling -> world -> viewing -> projection -> normalized -> device



Viewing transformations

OpenGL Super Bible, 5th Ed.

Projection: 
map 3D scene 
to 2D image

- viewing coordinates are based on the position and orientation of a the virtual camera
- 2D projection of the scene
- normalized device coordinates
- finally we get device or screen coordinates
- modeling -> world -> viewing -> projection -> normalized -> device



Orthographic projection

vector.tutsplus.com

Orthographic, or parallel projection
- square or rectangular viewing volume
- anything outside volume is not drawn
- all objects of same dimension appear the same regardless of distance from camera
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OpenGL Orthogonal Viewing
glOrtho(xmin,xmax,ymin,ymax,near,far)

glOrtho(left,right,bottom,top,near,far)

near and far measured from camera

Clipping volume
for an orthographic 

projection



Perspective projection

www.artyfactory.com

Orthographic, or parallel projection
- square or rectangular viewing volume
- anything outside volume is not drawn
- all objects of same dimension appear the same regardless of distance from camera

http://www.artyfactory.com
http://www.artyfactory.com
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OpenGL Perspective Viewing
glFrustum(xmin,xmax,ymin,ymax,near,far)

Clipping volume
(frustrum) for a 

perspective
projection
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Using Field of View
With glFrustum it is often difficult to get the desired view
gluPerpective(fovy, aspect, near, far) often 

provides a better interface

aspect = w/h

front plane



Viewport transformation

 Angel and Shreiner



Viewport transformation

Viewport is the 
whole window

Viewport is the 
lower left corner



Viewing transformations

Fundamentals of Computer Graphics, Shirley and Marschner

- Camera transformation: rigid body transformation that places the camera at the origin 
and in a convenient orientation
- Projection transformation: project to canonical view volume all coordinates end up 
between 0 and 1 or -1 and 1
- Viewport or windowing transformation: normalized coordinates to pixel coordinates



Scalars, points and vectors



Cartesian coordinates

OpenGL Super Bible, 5th Ed.

(2,3,2)

two-dimensional three-dimensional

Origin
(0,0,0)
Origin
(0,0,0)



Points

• A point is a location in space

P

Q

Reference: Angel, Chapter 3



Vectors

• A vector is a directed line segment

P
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Vectors

• Vectors have length and direction

P

Q
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• Vectors have length and direction

P

Q

V



Vectors

• These vectors are all the same



Vectors

• Vector scaling

V

2V



Vectors

• Vector addition   Z = V+ W

  “ head-to-tail rule “

V

WZ



<whiteboard>


