
CS230 : Computer Graphics
Lecture 2: Primitives and modeling

Tamar Shinar
Computer Science & Engineering

UC Riverside

Primitives and Attributes

Choice of primitives

• Which primitives should an API contain?

• small set - supported by hardware, or

• lots of primitives - convenient for user

Choice of primitives

• Which primitives should an API contain?

➡small set - supported by hardware

• lots of primitives - convenient for user

Performance is in 10s millions polygons/sec --
portability, hardware support key

Choice of primitives

• Which primitives should an API contain?

➡small set - supported by hardware

• lots of primitives - convenient for user

GPUs are optimized for
points, lines, and triangles

Choice of primitives

• Which primitives should an API contain?

➡small set - supported by hardware

• lots of primitives - convenient for user

GPUs are optimized for
points, lines, and triangles

Other geometric shapes will be built out of these

Two classes of primitives

 Angel and Shreiner

Geometric : points, lines, polygons
Image : arrays of pixels

Point and line segment types

 Angel and Shreiner

Polygons
• Multi-sided planar element composed of edges and

vertices.
• Vertices (singular vertex) are represented by points
• Edges connect vertices as line segments

E1

E3 E2

(x1,y1)

(x2,y2)

(x3,y3)

Valid polygons

• Simple

• Convex

• Flat

Valid polygons

• Simple

• Convex

• Flat

OpenGL polygons

• Only triangles are supported (in latest versions)

GL_POINTS GL_TRIANGLES

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN

Other polygons

triangulation

triangulation
as long as triangles are not collinear, they will be simple, flat, and convex -- easy to render

Sample attributes

• Color glClearColor(1.0, 1.0, 1.0, 1.0);

• Point size glPointSize(2.0);

• Line width glLineWidth(3.0);

Coordinate systems
and transformations

Viewing transformations

Eye
coordinates

Viewing transformations

Object
coordinates

World
coordinates

ViewModel

- viewing coordinates are based on the position and orientation of a the virtual camera
- 2D projection of the scene
- normalized device coordinates
- finally we get device or screen coordinates
- modeling -> world -> viewing -> projection -> normalized -> device

Viewing transformations

OpenGL Super Bible, 5th Ed.

Projection:
map 3D scene
to 2D image

- viewing coordinates are based on the position and orientation of a the virtual camera
- 2D projection of the scene
- normalized device coordinates
- finally we get device or screen coordinates
- modeling -> world -> viewing -> projection -> normalized -> device

Orthographic projection

vector.tutsplus.com

Orthographic, or parallel projection
- square or rectangular viewing volume
- anything outside volume is not drawn
- all objects of same dimension appear the same regardless of distance from camera

20

OpenGL Orthogonal Viewing
glOrtho(xmin,xmax,ymin,ymax,near,far)

glOrtho(left,right,bottom,top,near,far)

near and far measured from camera

Clipping volume
for an orthographic

projection

Perspective projection

www.artyfactory.com

Orthographic, or parallel projection
- square or rectangular viewing volume
- anything outside volume is not drawn
- all objects of same dimension appear the same regardless of distance from camera

http://www.artyfactory.com
http://www.artyfactory.com

22

OpenGL Perspective Viewing
glFrustum(xmin,xmax,ymin,ymax,near,far)

Clipping volume
(frustrum) for a

perspective
projection

23

Using Field of View
With glFrustum it is often difficult to get the desired view
gluPerpective(fovy, aspect, near, far) often

provides a better interface

aspect = w/h

front plane

Viewport transformation

 Angel and Shreiner

Viewport transformation

Viewport is the
whole window

Viewport is the
lower left corner

Viewing transformations

Fundamentals of Computer Graphics, Shirley and Marschner

- Camera transformation: rigid body transformation that places the camera at the origin
and in a convenient orientation
- Projection transformation: project to canonical view volume all coordinates end up
between 0 and 1 or -1 and 1
- Viewport or windowing transformation: normalized coordinates to pixel coordinates

Scalars, points and vectors

Cartesian coordinates

OpenGL Super Bible, 5th Ed.

(2,3,2)

two-dimensional three-dimensional

Origin
(0,0,0)
Origin
(0,0,0)

Points

• A point is a location in space

P

Q

Reference: Angel, Chapter 3

Vectors

• A vector is a directed line segment

P

Q

Vectors

• A vector is a directed line segment

P

Q

V

Vectors

• Vectors have length and direction

P

Q

V

Vectors

• Vectors have length and direction

P

Q

V

Vectors

• These vectors are all the same

Vectors

• Vector scaling

V

2V

Vectors

• Vector addition Z = V+ W

 “ head-to-tail rule “

V

WZ

<whiteboard>

