CS230 : Computer Graphics Lecture 12: Introduction to Animation

Tamar Shinar Computer Science & Engineering UC Riverside

Types of animation

- keyframing
- rotoscoping
- stop motion
- procedural
- simulation
- motion capture

Performance capture

Rise of the Planet of the Apes, 2011

Lord of the Rings, 2001

Avatar, 2009

Andy Serkis – Gollum, Lord of the Rings challenges – resolution, occlusion,

Rigid body simulation

Rachel Weinstein, Joey Teran and Ron Fedkiw

Rigid body simulation

Rachel Weinstein, Joey Teran and Ron Fedkiw

Deformable object simulation

N. Molino, Z. Bao, R. Fedkiw

Selle et al., 2008

Facial animation

Facial animation

Fluid simulation

Fluid simulation

Control of virtual character

issues: control algorithms, interaction with environment

Control of virtual character

rigid/deformable simulator in Pixar's WALL-E

rigid/deformable simulator in Pixar's WALL-E

Crowd simulation

Treuille et al., 2006

agent-based, model behavior
also, "global effects" – e.g., incompressibility

– emergent phenomena

Artificial life

- plants movement and growth
- evolving artificial life

history

Gertie the Dinosaur

1914
12 minutes
hand drawn
keyframe animation
registration
cycling

link

Traditional animation

- Cels
- <u>Multiplane camera</u>

Sleeping Beauty, Disney, 1959

Realistic 3D animation

- Disney's Tron, 1981
- Pixar's Toy Story, 1995, first 3D feature

Performance Capture

- Final Fantasy 2001
- Lord of the Rings 2001
- Beowulf 2007
- Avatar, 2009

Lord of the Rings, 2001

• Adventures of Tintin, 2011

animation principles

animation can bring even a flour sack to life
animations principles common to any type of animation

12 principles of animation

- I. Squash and stretch
- 2. Anticipation
- 3. Staging
- 4. Straight ahead action and pose to pose
- 5. Follow through and overlapping action
- 6. Slow in and slow out
- 7.Arcs
- 8. Secondary action
- 9. Timing
- 10. Exaggeration
- II. Solid drawing
- I 2. Appeal

Physics-based animation

- Many animation principles follow from underlying physics
 - anticipation, follow through, secondary action, squash and stretch, ...
- Spacetime Constraints, Witkin and Kass 1988

Physics-based animation

- Many animation principles follow from underlying physics
 - anticipation, follow through, secondary action, squash and stretch, ...
- Spacetime Constraints, Witkin and Kass 1988

keyframe animation

Keyframe animation

- draw a series of poses
- fill in the frames in between ("inbetweening")
 - computer animation uses interpolation

http://anim.tmog.net

Keyframe character DOFs

3 translational DOFs

48 rotational DOFs

Each joint can have up to 3 DOFs

Straightforward to interpolate position but what about orientation?

general rotations

Rotation

Rotation about an arbitrary axis

Rotating about an axis by theta degrees

- Rotate about x to bring axis to xz plane
- Rotate about y to align axis with z -axis
 Rotate theta degrees about z
- Unrotate about y, unrotate about x

$\mathbf{M} = \mathbf{R}\mathbf{x}^{-1} \mathbf{R}\mathbf{y}^{-1} \mathbf{R}\mathbf{z}(\theta) \mathbf{R}\mathbf{y} \mathbf{R}\mathbf{x}$

• Can you determine the values of Rx and Ry?

Composite Transformations

Rotating about a fixed point - basic rotation alone will rotate about origin but we want:

Composite Transformations

- Rotating about a fixed point
- Move fixed point (px,py,pz) to origin
 - Rotate by desired amount
- Move fixed point back to original position

 $\mathbf{M} = \mathbf{T}(px, py, pz) \mathbf{R}_{z}(\theta) \mathbf{T}(-px, -py, -pz)$

Euler's Rotation Theorem

Any displacement of a rigid body such that a point on the rigid body remains fixed, can be described as a rotation by some angle about some axis euler angles

 A general rotation is a combination of three elementary rotations: around the x-axis (x-roll), around the y-axis (y-pitch) and around the z-axis (zyaw).

Gimbal and Euler Angles

Z-X'-Z"

Wikimedia Commons

Extrinsic vs. Intrinsic rotations

Y

Y

Xθ

Wikimedia Commons

Euler Angles and Rotation Matrices

$$x - roll(\theta_1) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta_1 & \sin\theta_1 & 0 \\ 0 & -\sin\theta_1 & \cos\theta_1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix} \quad y - pitch(\theta_2) = \begin{pmatrix} \cos\theta_2 & 0 & -\sin\theta_2 & 0 \\ 0 & 1 & 0 & 0 \\ \sin\theta_2 & 0 & \cos\theta_2 & 0 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix}$$

$$z - yaw(\theta_3) = \begin{pmatrix} \cos\theta_3 & \sin\theta_3 & 0 & 0 \\ -\sin\theta_3 & \cos\theta_3 & 0 & 0 \\ 0 & 0 & 1 & 0^{\frac{1}{2}} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix}$$

$$R(\theta_1, \theta_2, \theta_3) = \begin{pmatrix} c_2 c_3 & c_2 s_3 & -s_2 & 0 \\ s_1 s_2 c_3 - c_1 s_3 & s_1 s_2 s_3 + c_1 c_3 & s_1 c_2 & 0 \\ c_1 s_2 c_3 + s_1 s_3 & c_1 s_2 s_3 - s_1 c_3 & c_1 c_2 & 0 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix}$$

36

quaternions

Here as be walked by on the 16th of October 1843 Sir William Rowan Manthen In a flash of genius discovered the fundamental formula for quaternion multiplication +2= 12= 夜2= 11 R=-1 TOTA STOTAS S

Quaternions

- axis/angle representation
- interpolates smoothly
- easy to compose

<whiteboard>

Quaternion Interpolation

Higher order interpolation

- Bezier curve
- Shoemake, Animating rotation with quaternion curves, 1985

Matrix form

$$\mathbf{R}(\mathbf{q}) = \begin{bmatrix} 1 - 2y^2 - 2z^2 & 2xy + 2wz & 2xz - 2wy & 0\\ 2xy - 2wz & 1 - 2x^2 - 2z^2 & 2yz + 2wx & 0\\ 2xz + 2wy & 2yz - 2wx & 1 - 2x^2 - 2y^2 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

43

Rotations in Reality

- It's easiest to express rotations in Euler angles or Axis/angle
- We can convert to/from any of these representations
- Choose the best representation for the task
 - input:Euler angles
 - interpolation: quaternions
 - composing rotations: quaternions, orientation matrix