CS230 : Computer Graphics Lecture I2: Introduction to Animation

Tamar Shinar
Computer Science \& Engineering
UC Riverside

Types of animation

- keyframing
- rotoscoping
- stop motion
- procedural
- simulation
- motion capture

Performance capture

Rise of the Planet of the Apes, 201।

Lord of the Rings, 2001

Avatar, 2009
Andy Serkis - Gollum, Lord of the Rings challenges - resolution, occlusion,

Rigid body simulation

Rigid body simulation

Rachel Weinstein, Joey Teran and Ron Fedkiw

Deformable object simulation

N. Molino, Z. Bao, R. Fedkiw

Selle et al., 2008

Facial animation

Facial animation

Fluid simulation

Fluid simulation

Control of virtual character

Control of virtual character

rigid/deformable simulator in Pixar's WALL-E

rigid/deformable simulator in Pixar's WALL-E

Crowd simulation

Treuille et al., 2006

- agent-based, model behavior
- also, "global effects" - e.g., incompressibility
- emergent phenomena

Artificial life

- plants - movement and growth
- evolving artificial life

history

Gertie the Dinosaur

1914
 12 minutes
 hand drawn
 keyframe animation
 registration
 cycling

link

Traditional animation

- Cels
- Multiplane camera

Sleeping Beauty, Disney, 1959

Realistic 3D animation

- Disney's Tron, 198I
- Pixar's Toy Story, 1995, first 3D feature

Performance Capture

- Final Fantasy 2001
- Lord of the Rings 2001
- Beowulf 2007
- Avatar, 2009

Lord of the Rings, 2001

- Adventures of Tintin, 201I
animation principles

- animation can bring even a flour sack to life
- animations principles common to any type of animation

I2 principles of animation

I. Squash and stretch
2. Anticipation

3. Staging
4. Straight ahead action and pose to pose
5. Follow through and overlapping action
6. Slow in and slow out
7.Arcs
8. Secondary action
9. Timing
10. Exaggeration

I I. Solid drawing
12.Appeal

Physics-based animation

- Many animation principles follow from underlying physics
- anticipation, follow through, secondary action, squash and stretch, ...
- Spacetime Constraints, Witkin and Kass 1988

Physics-based animation

- Many animation principles follow from underlying physics
- anticipation, follow through, secondary action, squash and stretch, ...
- Spacetime Constraints, Witkin and Kass 1988

keyframe animation

Keyframe animation

- draw a series of poses
- fill in the frames in between ("inbetweening")
- computer animation uses interpolation

http://anim.tmog.net

Keyframe character DOFs

3 translational DOFs

48 rotational DOFs

Each joint can have up to 3 DOFs

Interpolation of keyframes

linear interpolation

spline interpolation

Straightforward to interpolate position but what about orientation?

general rotations

Rotation

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]}
\end{aligned} \quad \text { X axis }
$$

Rotation about an arbitrary

 axis
Rotating about an axis by theta degrees

Rotate about x to bring axis to xz plane
Rotate about y to align axis with z-axis Rotate theta degrees about z Unrotate about y , unrotate about x

$$
\mathbf{M}=\mathbf{R x}^{-1} \mathbf{R y}^{-1} \mathbf{R z}(\theta) \mathbf{R y} \mathbf{R x}
$$

- Can you determine the values of $R x$ and Ry?

Composite Transformations

- Rotating about a fixed point
- basic rotation alone will rotate about origin but we want:

Composite Transformations

Rotating about a fixed point Move fixed point ($p x, p y, p z$) to origin Rotate by desired amount

- Move fixed point back to original position

$$
\mathbf{M}=\mathbf{T}(p x, p y, p z) \mathbf{R}_{\mathbf{z}}(\theta) \mathbf{T}(-p x,-p y,-p z)
$$

Euler's Rotation Theorem

Any displacement of a rigid body such that a point on the rigid body remains fixed, can be described as a rotation by some angle about some axis

euler angles

Euler Angles

- A general rotation is a combination of three elementary rotations: around the x-axis (x-roll), around the y-axis (y-pitch) and around the z-axis ($z-$ yaw).

Gimbal and Euler Angles

Z-X’-Z"

Wikimedia Commons

Extrinsic vs. Intrinsic rotations

Wikimedia Commons

Euler Angles and Rotation Matrices

$$
\begin{aligned}
& x-\operatorname{roll}\left(\theta_{1}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta_{1} & \sin \theta_{1} & 0 \div \\
0 & -\sin \theta_{1} & \cos \theta_{1} & 0 \div \\
0 & 0 & 0 & 1 \dot{\bar{\zeta}}
\end{array} \quad \mathrm{y}-\operatorname{pitch}\left(\theta_{2}\right)=\left(\begin{array}{cccc}
\cos \theta_{2} & 0 & -\sin \theta_{2} & 0 \\
0 & 1 & 0 & 0 \div \\
\sin \theta_{2} & 0 & \cos \theta_{2} & 0 \div \\
0 & 0 & 0 & 1 \dot{\bar{\zeta}}
\end{array}\right.\right. \\
& z-\operatorname{yaw}\left(\theta_{3}\right)=\left(\begin{array}{cccc}
\cos \theta_{3} & \sin \theta_{3} & 0 & 0 \\
-\sin \theta_{3} & \cos \theta_{3} & 0 & 0 \div \\
0 & 0 & 1 & 0 \div \\
0 & 0 & 0 & 1 \dot{广}
\end{array}\right.
\end{aligned}
$$

quaternions

yn.
Hiere as be walked by on the 16 th or Oetober 1843 Sir Willianz Rowebin Nowtern In a flash ofsenits discovered पheftanchine itest ormmator guaternione notultiplication $i^{2}=j^{2}-x^{2}=2 x=-i$ exureunn sedic stakulise

Quaternions

- axis/angle representation
- interpolates smoothly
- easy to compose
<whiteboard>

Quaternion Interpolation

linear

spherical linear "slerp"

Higher order interpolation

- Bezier curve
- Shoemake, Animating rotation with quaternion curves, 1985

Matrix form

$$
\begin{aligned}
& \mathbf{q}=\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right] \\
& \mathbf{R}(\mathbf{q})=\left[\begin{array}{cccc}
1-2 y^{2}-2 z^{2} & 2 x y+2 w z & 2 x z-2 w y & 0 \\
2 x y-2 w z & 1-2 x^{2}-2 z^{2} & 2 y z+2 w x & 0 \\
2 x z+2 w y & 2 y z-2 w x & 1-2 x^{2}-2 y^{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Rotations in Reality

- It's easiest to express rotations in Euler angles or Axis/angle
- We can convert to/from any of these representations
- Choose the best representation for the task
- input:Euler angles
- interpolation: quaternions
- composing rotations: quaternions, orientation matrix

