CS230 : Computer Graphics Lecture 10: Curves and Surfaces

Tamar Shinar Computer Science & Engineering UC Riverside

Acknowledgments

- Sources: Figures from Angel and Shreiner 6th edition, unless otherwise noted
- Some slides courtesy of V. Zordan

Parametric curve

- tangent vector

Parametric curve example

$$p(u) = c_0 + c_1 u + c_2 u^2$$
$$x(u) = 3u^2$$
$$y(u) = 2u + 3$$

$$c_0 = ?, \quad c_1 = ?, \quad c_2 = ?$$

Parametric Surface

Design considerations

- local control of shape
- smoothness and continuity
- ability to evaluate derivativesstability
- •ease of rendering

Design considerations

local control – design each segment independently

- stability - small change in input values leads to small change in output

Control points

Interpolating

Non-interpolating

Algebraic and Geometric Forms $P_0 \bullet P_1 \bullet P_3 \bullet P_0 \bullet P_1 \bullet P_3 \bullet P_2 \bullet P_3$

• Algebraic Form

$$p(u) = c_0 + c_1 u + c_2 u^2 + c_3 u^3$$

Geometric Form

$$p(u) = b_0(u)p_0 + b_1(u)p_1 + b_2(u)p_2 + b_3(u)p_3$$

Interpolating curves

Blending polynomials

Bicubic Surface Patch P₃₁ **P**₃₂ **P**₃₀ **P**33 **P**₂₀ **P**₂₁ **P**₂₂ **P**₂₃ **P**₁₀ **P**₁₂ **P**₁₁ **P**13 X **P**₀₂ Poo **P**₀₁ **P**03 Ζ