CS230 : Computer Graphics
Winter 2012

Tamar Shinar
Computer Science & Engineering

UC Riverside

Welcome to CS230!

S50

\/

Qi
TR
AN

£,

/i ‘ \‘v
i

o
<l

QL
T
pA

OSLF
55

=

o=

RS
R
VAV

=
a4

N

V)

V\
7a7a)

N

VA

XK
S
o

T
v

v,
¥,

SSK

v,

avavav,
SRS
20

ATAVAR B A AAVAVAYAYAY
AV A - N/

55
258
157

4%

v,

TATAVAYA

SRR

oY
OO0
A

pAVATSY
vavaty
AV AVAYAY,Y,

KN

i

o
"l
%,

AV

X
]

o
A VAVATAVLY,

%
LR TATAYAYAT

Ay, v

(N

9,
MO

<

2
S,

5

X

%
4

VAV
STAYeY
0

,
X7
ears
R
55
s

Today’s agenda

Course Logistics

Introduction: graphics areas and applications
Course schedule

Introduction to the graphics pipeline and OpenGL

Math review

Course Logistics

Instructor: Tamar Shinar

No TA

Website: http://www.cs.ucr.edu/~shinar/courses/cs230
Lectures: MWV, 3:40-5pm

Office hours: after class, and Wed|-2pm,WCH 419

announcements (assignments, etc.) made in class and on
course website

Course Logistics

® Grading
® |0% class participation
® 60% assignments (3 assignments, each ~2 weeks)
® 30% final project
® No exams

® Total of 3 late days (72 hours) for the quarter for the
assignments only

® final must be submitted on time

® assignments individual; project individual or group of 2

- In-class participation

- some in class problems - only graded for correctness if we’ve already covered it

- otherwise only graded for presence and effort

- may ask someone to work a problem
- quiz will normally be in the first 5-10 minutes of class -- today we’ll have a short one at the
end that you will get full credit on -- check your own math skills and give me a sense of
class’s math skill
- Q. how many people have taken graphics before? MS students? PhD students? Want to go
on to work in graphics?
- final project:

— there will be a proposal due

Textbook

Computer Graphics

" Heamn

Baker

S Computer Graphics with OpenGL
Hearn Baker, Carithers

'''''

OpenGL 4 INTERACTIVE
Programming Guide COMPUTER Fundamentals
The Officia G GRAPHICS

OpennGL", Versions 3.0 amd 3.1
A TOP-DOWN AFFROALH
WITH SHADE-BASED

e Official Guide to Learning
i)

Additional
books

 EONARD ANGEL = DAVE SHRENER

if you like using a book
- red book older version online:http://fly.cc.fer.hr/~unreal/theredbook/

And if you prefer —- all material is online in one form or another —- you don’t have to buy a
book but it can be useful for a coherent presentation

About me

B.S., University of lllinois in Urbana-Champaign,
Mathematics, Computer Science, art

Ph.D., 2008, Stanford University on simulation methods
for computer graphics

Started at UCR in the fall
Work in graphics simulation and biological simulation

http://www.cs.ucr.edu/~shinar

Graphics applications

2D drawing
Drafting, CAD
Geometric modeling
Special effects
Animation

Virtual Reality

Games
Educational tools
Surgical simulation

Scientific and
information
visualization

Fine art

Graphics areas

e Modeling - mathematical representations of
physical objects and phenomena

® Rendering - creating a shaded image from 3D
models

¢ Animation - creating motion through a
sequence of images

e Simulation - physics-based models for modeling
dynamic environments

Which area would you like your final project to be in?

Think about which area interests you, dovetails with your present or future research, or that
you want to learn more about
Modeling and rendering are separate stage

- first design and position objects -- modeling

- then add lights, materials properties, effects —- rendering

EXTRUSION

Modeling

®00 PhysBAM geometry viewer

PhysBAM geometry viewer

Talton et al,, 2011

T
V. r;;';X¢:§f
"ém%'{i'%'ﬁwm?\‘&
v/ %
AR X
OISR
. SRRSO AR
4 \ X

AN AVAVAS

TAv4)

i
=%

27
N
!
IS
A AVAVAY
QV%VA PA)
ATAVAVAVAY

/N

o5
T

KN VAN
Doy
DAY
ANVEE
¥, SO 0, :""‘e‘gﬂ
\

1V
\VOONN
;"::i\\)gs“ N

AR
SSIN

74
)

L7
Z

77

%7

Iy
(7
o7

1%

N

avAY 2z

7
!

R

P

\

D
S

s

Schroder, 200

- subdivision surface - Siggraph course notes 2000

- Teddy : sketch based interface for 3D modeling

- Talton et al. —- procedural modeling - for games, virtual worlds, design, etc.
- combine machine learning and graphics

- Bronstein - reasoning about geometric models for search

Rendering

PhysBAM geometry viewer

Henrik WWann Jensen

- opengl - 3D graphics (z-buffer) rendering

- teapot - image-based lighting - illuminated by a high dynamic range environment -
metal, glass, diffuse, and glossy

- subsurface scattering - to capture translucent materials such as skin and marble

- rendering a emissive material such as fire — participating medium - scattering, absorption
- local vs global illumination

— direct vs. global illumination

— direct vs. global illumination

Animation

*:\ : T

Sleeping Beauty, Disney, 1959

Adventures of Tintin,VVeta 201 |

Sleeping Beauty, Disney, 1959

Animation

5

Adventures of Tintin,VVeta 201 |

7

]
. 1 h .c.v

Simulation

© Disney

Firestorm
Harry Potter and the Half Blood Prince
Industrial Light + Magic

Firestorm
Harry Potter and the Half Blood Prince
Industrial Light + Magic

fluid simulation in Pixar’s Ratatouille

fluid simulation in Pixar’s Ratatouille

Other areas...

® |nteractivity (HCI)

® |mage processing

® Visualization L-1 Identity Solns

e Computational photography

Microsoft Kinect &

Lytro

- Lytro demo: http://www.lytro.com/living-pictures/2325

Course overview

® | earn fundamental 3D graphics concepts
® |mplement graphics algorithms
® make the concepts concrete

® expand your abilities and confidence for future work

Course schedule

tentative; see course website for up-to-date schedule

Lecture | Date Topic Reading Assigned Due

1 Jan9 Introduction HBC, Ch. 3

2 Jan11 Modeling, graphics primitives | HBC, Ch. 4,5

- Jan 16 HOLIDAY

3 Jan 18 Rasterization HBC, Ch. 6 Assighment 1

4 Jan 23 3D transforms and viewing HBC, Ch. 9, 10

5 Jan 25 3D Modeling HBC, Ch. 13, 14, 15

6 Jan 30 3D Modeling, cont. HBC, Ch. 13, 14, 15 | Assianment2 | Assignment 1
7 Feb 1 Visible surface detection HBC, Ch. 16

7 Feb 6 Lighting and surface shading | HBC, Ch. 17

8 Feb 8 Texture mapping HBC, Ch. 18

9 Feb 13 Global [llumination HBC, Ch. 21 Assighment 3 | Assignment 2
10 Feb 15 Programmable Shaders HBC, Ch. 22

- Feb 20 HOLIDAY Project Proposal
12 Feb 22 Animation HBC, Ch. 12
13 Feb 27 Graphics hardware Assignment 3
14 Feb 29 Particle systems
15 Mar 5 Rigid body simulation
16 Mar7 Deformable body simulation
17 Mar 12 Character animation
18 Mar 14 Fluid simulation

- Finals week (TBA) | Project presentations Final Project

CS230
Intro to OPEN GL

(with some slides courtesy of V. Zordan)

OpenGL: Conceptual Model

Real Object

21

OpenGL: Conceptual Model
O

; Real Light

Human Eye

Real Object

Human Eye

Real Object
Display
Device

Graphics System

22

Introduction to

e Open Graphics Library, managed by Khronos Group
® A software interface to graphics hardware

® Standard AP| with support for multiple languages and
platforms, open source

® ~250 distinct commands
® Main competitor: Microsoft’s Direct3D

® http://www.opengl.org/wiki/Main Page

— used to produce interactive 3D graphics

- sits between programmer and 3D accelerators and hardware

- standard requires support for feature set for all implementations

- Both OpenGL and Direct3D support feature sets —-- they take advantage of hardware
acceleration or use software emulation when a feature is unavailable in hardware

— Direct3D is proprietary

- OpenGl and Direct3D both implemented in the display driver

OpenGL - Software to Hardware

» Silicon Graphics (SGI) revolutionized the
graphics workstation by putting graphics
pipeline in hardware (1982)

* To use the system, application
programmers used a library called GL

» With GL, it was relatively simple to
program three dimensional interactive
applications

24

OpenGL

* The success of GL lead to OpenGL
(1992), a platform-independent API that
was
- Easy to use
- Close to the hardware - excellent performance
- Focus on rendering

- Omitted windowing and input to avoid window
system dependencies

25

What can OpenGL do!?

Examples from the
OpenGL Programming Guide (“red book™)

>
e

_—

gGuide.

o~

- Wireframe models
- shows each object up of polygons
- the lines are are the edges and the faces of the polygons make up the object surface

supports the atmospheric ettect “tog”

Plate 2. The same scene using fog for depth-cueing (lines further from the eye are dimmer). See Chapter

7.

OpenGL-Prégramming " Guide

Plate 3. The same scene with antialiased lines that smooth the jagged edges. See Chapter 7 .

when you approximate smooth edges using pixels, this leads to jagged lines
especially with near vertical and near horizontal lines

OpenGL Programming Guide

Plate 4. The scene drawn with flat-shaded polygons (a single color for each filled polygon). See
Chapter S .

“unlit scene”

OpenGL Programming Guide s O
Crriis e e

T

RSB PO PGS L AR AS FAF AP

Plate 5. The scene rendered with lighting and smboth-shaded pols;.gons. See Chapter 5 and Chapter 6 .

OpenGL Programming Guide

Plate 6. The scene with texture maps and shadows added. See Chapter 9 and Chapter 13 .

OpenGL Programming Guide

Plate 7. The scene drawn with one of the objects motion-blurred. The accumulation buffer is used to
compose the sequence of images needed to blur the moving object. See Chapter 10 .

4
1808
¥ ek
[oa
L
Faa PPl
54 20
154 gssassTsdLasTus IR
CRTNY:

BRI N Y

o~k S e

e]

R
oLs
LA A sl s o
N
bl
o
+
SR TNt -)
* *
RN N a. ¥ I
shedal dubdy,
O O
S &
ey

...........

Plate 8. A close-up shot - the scene is rendered from a new viewpoint. See Chapter 3 .

Plate 9. The scene drawn using atmospheric effects (fog) to simulate a smoke-filled room. See Chapter
7.

OpenGL state machine

® put OpenGL into various states
® e.g,current color, current viewing transformation
® these remain in effect until changed
® glEnable(), glDisable(), glGet(), gllsEnabled()

® gl|PushAttrib(), glPopAttrib() to temporarily modify
some state

OpenGL command syntax

® commands: glClearColor();
® gl|Vertex3f()
® constants: GL_COLOR_BUFFER BIT
e types: GLfloat, GLdouble, GLshort, GLint,

Simple OpenGL program

#include <whateverYouNeed.h>
main() {
InitializeAWindowPlease();

glClearColor(0.0, 0.0, 0.0, 0.0);
glClear (GL COLOR BUFFER BIT);
glColor3f(1.0, 1.0, 1.0);

glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
glBegin(GL_ POLYGON) ;

glvertex3f(0.25, 0.25, 0.0);
glvertex3f(0.75, 0.25, 0.0);
glvertex3f(0.75, 0.75, 0.0);
glvertex3f(0.25, 0.75, 0.0);

glEnd();
glFlush();

UpdateTheWindowAndCheckForEvents() ;

OpenGL Programming Guide, 7th Ed.

- blue are placeholders for windowing system commands
- clear color, actual clear

- Ortho - the coordinate system

— flush executes the commands

aster Images

(a) (b)

Hearn, Baker, Carithers

virtually all graphics system are raster based, meaning the image we see is a raster of
pixels
Here a raster scan device display an image as a set of discrete points across each scanline

Modern graphics system

.—.» P—
,e/ ol o Central | _ Grophics | _ Frome
processor processor bulfer
l - i .
Y
y —— cru | GPU
w " Memory Memory
Input
devices

Interactive Computer Graphics,Angel and Shreiner

Output
devices

the pixels are stored in a location in memory call the frame buffer
frame buffer resolution determines the details in the image

- e.g., 24 bit color “full color”

- high dynamic range or HDR use 12 or more bits for each color
frame buffer = color buffers + other buffer

Z-buffer Rendering

/-buffering is very common approach, also

often accelerated with hardware

*OpenGL is based on this approach

3D Polygon

.GRAPHICS PIPELINE

Image Pixels

41

Pipelining operations

An arithmetic pipeline that computes c+(a*b)

2 —>
b—>| © [T[>

By pipelining the arithmetic operation, the throughput, or rate at which data flows through

the system, has been doubled
If the pipeline had more boxes, the latency, or time it takes one datum to pass through the

system, would be higher
throughput and latency must be balanced

3D graphics pipeline

Clipper and
Verti Vertex PPer R : Fragment Piscel
ertices mmgpy processor'_) primitive | Rasterizer fmmppy orocessor - Pixels
assembler

Geometry: objects - made of primitives — made of vertices
Vertex processing: coordinate transformations and color
Clipping and primitive assembly: output is a set of primitives
Rasterization: output is a set of fragments for each primitive
Fragment processing: update pixels in the frame buffer

the pipeline is best when we are doing the same operations on many data sets

—- good for computer graphics!! where we process larges sets of vertices and pixels in the
same manner

1. Geometry: objects - made of primitives - made of vertices

2. Vertex processing: coordinate transformations and color

3. Clipping and primitive assembly: use clipping volume. must be primitive by primitive
rather than vertex by vertex. therefore vertices must be assembled into primitives before
clipping can take place. Output is a set of primitives.

4. Rasterization: primitives are still in terms of vertices -- must be converted to pixels. E.g.,
for a triangle specificied by 3 vertices, the rasterizer must figure out which pixels in the frame
buffer fill the triangle. Output is a set of fragments for each primitive. A fragment is like a
potential pixel. Fragments can carry depth information used to figure out if they lie behind
other fragments for a given pixel.

5. Fragment processing: update pixels in the frame buffer. some fragments may not be
visible. texture mapping and bump mapping. blending.

Other rendering approaches include

Other rendering approaches

® Ray tracing, radiosity, and photon mapping

® more physical but don’t achieve real-time performance

ray-tracing comes close to real time

none come close to to the performance of pipeline architectures

GPUs implement this graphics pipeline

- for many years, these pipeline architectures had fixed functionality

- recently, the vertex processor and the fragment processor are now programmable
this opens the door for many features that were not part of the pipeline to become part
of the pipeline and hence become realtime - e.g., bump mapping

GPUs are also now being used for high performance computing that does not involve

graphics

3D graphics pipeline

® optimized for drawing 3D triangles with shared vertices
® map 3D vertex locations to 2D screen locations

® shade triangles and draw them in back to front order
using a z-buffer

® speed depends on # of triangles

® most operations on vertices can be represented using a
4D coordinate space - 3D position + homogeneous
coordinate for perspective viewing

® 4x4 matrices and 4-vectors

- use varying level of detail - fewer triangles for distant objects
1. construct shapes from primitives - points, lines, polygons, images, bitmaps, (mathematical
descriptions of objects) - specify the model

OpenGL Rendering Pipeline

Geometric Pipeline

Tronstorm - Project o Clip X
) \ g
OpenGl .

Simplified

opplication & > Pixel ti It b= Frome
. | ixel operations § buffer
program
Pixel Pipeline . .
Interactive ComputetGraphics,Angel and Shreiner
Per-Vertex
Vertex Operations
Data Evaluator [—» o
Primitive
Assembly Per-
. S .
: B|stplay R?sterlz- »{ Fragment Framebuffer
s > atlon Operations
Pixel y » Pixel 1
Datg & Operations ... Texture
: Memory

--

segal and Akeley, 1994 Figure 1. Block diagram of OpenGL.

- Assembly-line approach to processing data
- Vertex data: data that is or will be converted to vertices: points, lines, polygons, surfaces
- Pixel data: images, bitmaps, pixels
- vertex data and pixel data follow different paths, but both eventually undergo rasterization
and per-fragment operations
— Display lists:
- data can be save in display lists or processed in immediate mode
- from display list it can be processed same as in immediate mode
- Evaluators:
- all geometric data eventually reduced to vertices (evaluators for parametrized curves and
surfaces)
- Per-vertex operations: converts the vertices into primitives
- 3D spatial coordinate transformed to screen coordinate + depth value
- texture coordinates generated and transformed here
- lighting calculations using material properties, light information, normals,
- in newer versions of OpenGL, using a “vertex shader” is mandatory
- GLSL
- this replaces all the per-vertex operations
— Primitive assembly:
- clipping is a major part
- eliminate parts of geometry outside a half-space
- remove points or for lines and polygons it can add points
- results: complete geometric primitives: transformed and clipped vertices with color,
depth, and texture-coordinate values
- Pixel operations:
- pixels take a different route through the OpenGL rendering pipeline
- Texture assembly:
— apply textures to objects (Ch. 9)
— Rasterization:

EnableClientState

DisableClientState

EdgeFlagPointer —p]

TexCoordPointer —— -1
ColorPointer —]

Vertex
IndexPointer ——{ Array oo MapGeid
NormalPointer ——| Control
VertexPointer ——-
InterLeavedArrays ——
Evaluator
EvalMesh —— Grid
ArrayEloment EvalPoint ——# Application
DrawEloments
DrawArrays
—
[-
Evaluation -
L ————
an—T
Enable/Disable
I Current I
EdgeFiag Edge
i
- Enable/Disable
TexCoordt =] 10 l
TexCoord2 —-| 10
Texture
TexCoord3 —{ a1 Matrix
Stack
TexGen
! Current r —l
TexCoordd ; Texture

Colora

Coordinates

i) (i

Current

_|
N

Enable/Disable
ColorMaterial

Colora

Pl
-]
8
S

] (s

Color.

r
&

Material

Material

Parameters
Control

Lighthodel

The OpenGL Machine

The OpenGL® graphics system diagram, Version 1.1. Copyright © 1996 Silicon Graphics, Inc. All rights reserved.

Vertices

Primitives

m;_l]

Texture

> Application >

Fragments ——

Key to OpenGL Operations

Enable/Disable

| =

Coverage
Pixel
(antialiasing) Ownershi
Application nership
Test

s—l] ..py.m..c_l 15....¢mm_l l u..,.m.m_l s.,mm_l]
A

Scissor ha
Test Test
(RGBA only)

Stencil

Test

Dithering

Logic Op

Values

ClearStencil
ClearDepth
Clearindex

ClearColor

i1
{

pepi Blending
e (RGBA only)
Test

T

DepthMask
StencilMask

ColorMask
IndexMask

DrawButfer

Frame Buffer

Readback

Current [&7] Begin/End
Index Color 5
Index Lo
L
Enable/Disable
L
) [e prmie
ing Equation . —
Convert curmont K 'ghting Eq Assembly
; Gurret Normalize askto | [
Clenea | 10 (J L 9] oo Lo cquion o] -
Vertexz
Rasterpos2 > Z<° FrontFace vt
Vertexs
RasterPos3 wet
Vertexa : OBJECT r : ™ EVE
RasterPos4 LO)F COORDINATES " ‘COORDINATES
Rect Rectangle
Generation
Model View
Matrix
Stack
Enable/Disable
(Antialiasing/Stipple)
MatrixModk ClipP
o Matrix priane FrontFace PolygonOffset
PopMatrix Gontrol CullFace
b
Loadidentity —————| Polygon Polygon
LoadMatrix —————] A outing Rasterization
rojection Viewport
cii
Matri n Enable/Disabl
e e gy
LineStipple
—1 oo LineWidth
POLYGONS Polygon b M M= View Volume
Clipping Clipping Divide P Line
Flatshading Vertex Segment
LINE Line Rasterization
SEGMENTS Clipping ° View Volume by TexParameter
(Vertex Clipping w Enable/Disable_
Only) Point ali
POINTS. Point " "
Culling
L
L
Texel
oo Generation
urrent —
Raster —
Position
Notes:) o] reotens { s
1. Commands (and constants) are shown without the Encoding
gl (or GL_) prefix.
2. The following commands do not appear in this f <—l Pixeizoo
i i PolygonStipple ——ps| ixelZoom
diagram: glAccum, giClearAccum, glHint, 4
) :) ackBuffer Bitmap —-|
display list commands, texture object commands, SelectBufter ame FeedbackBufer -
commands for obtaining OpenGL state Pixels f——po|
Teximage —-| pixel
(glGet commands and gllsEnabled), and nithames roanator Texture
glPushAttrib and glPopAttrib. Utility library LoadName — Memory
routines are not shown. Posmmame Pretsiore =4 1
3. After their exectution, glDrawArrays and
glDrawElements leave affected current values Pi
indeterminate.
4. This diagram is schematic; it may not directly

correspond to any actual OpenGL implementation.

ReadPixel <—‘
eadpixels Pixels

CopyPixels

CopyTexSublmage

Control

— open up file to |

ook at this more

closely

OpenGL Libraries

*OpenGL core library (gl.h)
-OpenGL32 on Windows
-GL on most unix/linux systems

*OpenGL Utility Library -GLU (glu.h)

-avoids having to rewrite code

*OpenGL Utility Library -GLUT (glut.h)

-Provides functionality such as:
Open a window

Get input from mouse and keyboard
Menus

48

- GL
- no windowing commands
- no commands for higher-level geometry - you build these using primitives (points, lines,
polygons)
- GLU - standard in every implementation
- OpenGL Utility library provides modeling support
- quadratic surfaces, NURBS curves and surfaces

Software Organization

application program

| | |

0) nG'L Motif
wid%izt or sir?ltilar GLUT
GLU
X windows GL

| |

software and/or hardware

49

Simple OpenGL program

#include <whateverYouNeed.h>
main() {
InitializeAWindowPlease();

glClearColor(0.0, 0.0, 0.0, 0.0);
glClear (GL COLOR BUFFER BIT);
glColor3f(1.0, 1.0, 1.0);

glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
glBegin(GL_ POLYGON) ;

glvertex3f(0.25, 0.25, 0.0);
glvertex3f(0.75, 0.25, 0.0);
glvertex3f(0.75, 0.75, 0.0);
glvertex3f(0.25, 0.75, 0.0);

glEnd();
glFlush();

UpdateTheWindowAndCheckForEvents() ;

OpenGL Programming Guide, 7th Ed.

- blue are placeholders for windowing system commands
—can replace blue code with calls to glut

Simple OpenGL program

void init() {
glClearColor(0.0, 0.0, 0.0, 0.0);
}

void display() {
glClear (GL_COLOR_BUFFER BIT);
glColor3f(1.0, 1.0, 1.0);
glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
glBegin(GL POLYGON) ;

glvertex3f(0.25, 0.25, 0.0);
glvertex3f(0.75, 0.25, 0.0);
glvertex3f(0.75, 0.75, 0.0);
glvertex3f(0.25, 0.75, 0.0);

glEnd();
glFlush();

}

main() {
glutInit(&argc, argv);
glutInitDisplayMode (GLUT SINGLE | GLUT RGB);
glutInitWindowSize (FB _WIDTH, FB HEIGHT);
glutCreateWindow ("Test OpenGL Program');
init();
glutDisplayFunc(display);
glutMainLoop();

}

- blue are placeholders for windowing system commands
—can replace blue code with calls to glut

END

