
CS230 : Computer Graphics
Winter 2012

Tamar Shinar
Computer Science & Engineering

UC Riverside

Pixar

Welcome to CS230!

Talton et al., 2011

Schröder, 2000

Hong et al. 2007

ILM

Henrik Wann Jensen

LLNL

Today’s agenda

• Course Logistics

• Introduction: graphics areas and applications

• Course schedule

• Introduction to the graphics pipeline and OpenGL

• Math review

Course Logistics

• Instructor: Tamar Shinar

• No TA

• Website: http://www.cs.ucr.edu/~shinar/courses/cs230

• Lectures: MW, 3:40-5pm

• Office hours: after class, and Wed1-2pm, WCH 419

• announcements (assignments, etc.) made in class and on
course website

Course Logistics
• Grading

• 10% class participation

• 60% assignments (3 assignments, each ~2 weeks)

• 30% final project

• No exams

• Total of 3 late days (72 hours) for the quarter for the
assignments only

• final must be submitted on time

• assignments individual; project individual or group of 2

- In-class participation
 - some in class problems - only graded for correctness if we’ve already covered it
 - otherwise only graded for presence and effort
 - may ask someone to work a problem
- quiz will normally be in the first 5-10 minutes of class -- today we’ll have a short one at the
end that you will get full credit on -- check your own math skills and give me a sense of
class’s math skill
- Q. how many people have taken graphics before? MS students? PhD students? Want to go
on to work in graphics?
- final project:
 - there will be a proposal due

Textbook

Computer Graphics with OpenGL
Hearn Baker, Carithers

Additional
books

if you like using a book
- red book older version online:http://fly.cc.fer.hr/~unreal/theredbook/
And if you prefer -- all material is online in one form or another -- you don’t have to buy a
book but it can be useful for a coherent presentation

About me

• B.S., University of Illinois in Urbana-Champaign,
Mathematics, Computer Science, art

• Ph.D., 2008, Stanford University on simulation methods
for computer graphics

• Started at UCR in the fall

• Work in graphics simulation and biological simulation

http://www.cs.ucr.edu/~shinar

Graphics applications

• 2D drawing

• Drafting, CAD

• Geometric modeling

• Special effects

• Animation

• Virtual Reality

• Games

• Educational tools

• Surgical simulation

• Scientific and
information
visualization

• Fine art

Graphics areas

• Modeling - mathematical representations of
physical objects and phenomena

• Rendering - creating a shaded image from 3D
models

• Animation - creating motion through a
sequence of images

• Simulation - physics-based models for modeling
dynamic environments

Which area would you like your final project to be in?

Think about which area interests you, dovetails with your present or future research, or that
you want to learn more about
Modeling and rendering are separate stage
 - first design and position objects -- modeling
 - then add lights, materials properties, effects -- rendering

Modeling

Talton et al., 2011

Schröder, 2000

Igarashi et al., 2007

CFD Technologies

Bronstein et al., 2011

- subdivision surface - Siggraph course notes 2000
- Teddy : sketch based interface for 3D modeling
- Talton et al. -- procedural modeling - for games, virtual worlds, design, etc.
 - combine machine learning and graphics
- Bronstein - reasoning about geometric models for search

Rendering

Hong et al. 2007

Henrik Wann Jensen
d’Eon and Irving, 2011

- opengl - 3D graphics (z-buffer) rendering
- teapot - image-based lighting - illuminated by a high dynamic range environment -
metal, glass, diffuse, and glossy
- subsurface scattering - to capture translucent materials such as skin and marble
- rendering a emissive material such as fire - participating medium - scattering, absorption
- local vs global illumination

- direct vs. global illumination

- direct vs. global illumination

Animation

Adventures of Tintin, Weta 2011

Sleeping Beauty, Disney, 1959

Animation

Adventures of Tintin, Weta 2011

Sleeping Beauty, Disney, 1959

Simulation

ILM

ILM Pixar

Weta

Firestorm
Harry Potter and the Half Blood Prince
Industrial Light + Magic

Firestorm
Harry Potter and the Half Blood Prince
Industrial Light + Magic

fluid simulation in Pixar’s Ratatouille

fluid simulation in Pixar’s Ratatouille

Lytro

Other areas...

• Interactivity (HCI)

• Image processing

• Visualization

• Computational photography LLNL

Microsoft Kinect

L-1 Identity Solns

- Lytro demo: http://www.lytro.com/living-pictures/2325

Course overview

• Learn fundamental 3D graphics concepts

• Implement graphics algorithms

• make the concepts concrete

• expand your abilities and confidence for future work

Course schedule
tentative; see course website for up-to-date schedule

CS230
Intro to OPEN GL

(with some slides courtesy of V. Zordan)

21

OpenGL: Conceptual Model

Real Object
Human Eye

Real Light

22

OpenGL: Conceptual Model

Real Object
Human Eye

Real Light

Real Object
Human Eye

Display
Device

Graphics System

Synthetic
Model

Synthetic
Camera

Synthetic
Light Source

Introduction to OpenGL

• Open Graphics Library, managed by Khronos Group

• A software interface to graphics hardware

• Standard API with support for multiple languages and
platforms, open source

• ~250 distinct commands

• Main competitor: Microsoft’s Direct3D

• http://www.opengl.org/wiki/Main_Page

- used to produce interactive 3D graphics
- sits between programmer and 3D accelerators and hardware
- standard requires support for feature set for all implementations
- Both OpenGL and Direct3D support feature sets -- they take advantage of hardware
acceleration or use software emulation when a feature is unavailable in hardware
- Direct3D is proprietary
- OpenGl and Direct3D both implemented in the display driver

24

OpenGL - Software to Hardware

• Silicon Graphics (SGI) revolutionized the
graphics workstation by putting graphics
pipeline in hardware (1982)

• To use the system, application
programmers used a library called GL

• With GL, it was relatively simple to
program three dimensional interactive
applications

25

OpenGL

• The success of GL lead to OpenGL
(1992), a platform-independent API that
was
- Easy to use
- Close to the hardware - excellent performance
- Focus on rendering
- Omitted windowing and input to avoid window

system dependencies

What can OpenGL do?
Examples from the

 OpenGL Programming Guide (“red book”)

OpenGL Programming Guide

- Wireframe models
 - shows each object up of polygons
- the lines are are the edges and the faces of the polygons make up the object surface

OpenGL Programming Guide

supports the atmospheric effect “fog”

Plate 2. The same scene using fog for depth-cueing (lines further from the eye are dimmer). See Chapter
7 .

OpenGL Programming GuideOpenGL Programming Guide

Plate 3. The same scene with antialiased lines that smooth the jagged edges. See Chapter 7 .

when you approximate smooth edges using pixels, this leads to jagged lines
especially with near vertical and near horizontal lines

OpenGL Programming Guide

• `

OpenGL Programming Guide

Plate 4. The scene drawn with flat-shaded polygons (a single color for each filled polygon). See
Chapter 5 .

“unlit scene”

OpenGL Programming GuideOpenGL Programming Guide

Plate 5. The scene rendered with lighting and smooth-shaded polygons. See Chapter 5 and Chapter 6 .

OpenGL Programming GuideOpenGL Programming Guide

Plate 6. The scene with texture maps and shadows added. See Chapter 9 and Chapter 13 .

OpenGL Programming GuideOpenGL Programming Guide

Plate 7. The scene drawn with one of the objects motion-blurred. The accumulation buffer is used to
compose the sequence of images needed to blur the moving object. See Chapter 10 .

OpenGL Programming GuideOpenGL Programming Guide

Plate 8. A close-up shot - the scene is rendered from a new viewpoint. See Chapter 3 .

OpenGL Programming GuideOpenGL Programming Guide

Plate 9. The scene drawn using atmospheric effects (fog) to simulate a smoke-filled room. See Chapter
7 .

OpenGL state machine

• put OpenGL into various states

• e.g., current color, current viewing transformation

• these remain in effect until changed

• glEnable(), glDisable(), glGet(), glIsEnabled()

• glPushAttrib(), glPopAttrib() to temporarily modify
some state

OpenGL command syntax

• commands: glClearColor();

• glVertex3f()

• constants: GL_COLOR_BUFFER_BIT

• types: GLfloat, GLdouble, GLshort, GLint,

Simple OpenGL program
#include <whateverYouNeed.h>

main() {

 InitializeAWindowPlease();

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0, 1.0, 1.0);
 glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
 glBegin(GL_POLYGON);
 glVertex3f(0.25, 0.25, 0.0);
 glVertex3f(0.75, 0.25, 0.0);
 glVertex3f(0.75, 0.75, 0.0);
 glVertex3f(0.25, 0.75, 0.0);
 glEnd();
 glFlush();

 UpdateTheWindowAndCheckForEvents();
}

OpenGL Programming Guide, 7th Ed.

- blue are placeholders for windowing system commands
- clear color, actual clear
- Ortho - the coordinate system
- flush executes the commands

Raster images

Hearn, Baker, Carithers

virtually all graphics system are raster based, meaning the image we see is a raster of
pixels
Here a raster scan device display an image as a set of discrete points across each scanline

Modern graphics system

Input
devices

Output
devices

Interactive Computer Graphics, Angel and Shreiner

the pixels are stored in a location in memory call the frame buffer
frame buffer resolution determines the details in the image
 - e.g., 24 bit color “full color”
 - high dynamic range or HDR use 12 or more bits for each color
frame buffer = color buffers + other buffer

41

Z-buffer Rendering

•Z-buffering is very common approach, also
often accelerated with hardware

•OpenGL is based on this approach

3D Polygon Image Pixels
GRAPHICS PIPELINE

Pipelining operations

* +b
a

c

An arithmetic pipeline that computes c+(a*b)

By pipelining the arithmetic operation, the throughput, or rate at which data flows through
the system, has been doubled
If the pipeline had more boxes, the latency, or time it takes one datum to pass through the
system, would be higher
throughput and latency must be balanced

3D graphics pipeline

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processor

Vertices Pixels

Geometry: objects - made of primitives - made of vertices
Vertex processing: coordinate transformations and color
Clipping and primitive assembly: output is a set of primitives
Rasterization: output is a set of fragments for each primitive
Fragment processing: update pixels in the frame buffer

the pipeline is best when we are doing the same operations on many data sets
 -- good for computer graphics!! where we process larges sets of vertices and pixels in the
same manner
1. Geometry: objects - made of primitives - made of vertices
2. Vertex processing: coordinate transformations and color
3. Clipping and primitive assembly: use clipping volume. must be primitive by primitive
rather than vertex by vertex. therefore vertices must be assembled into primitives before
clipping can take place. Output is a set of primitives.
4. Rasterization: primitives are still in terms of vertices -- must be converted to pixels. E.g.,
for a triangle specificied by 3 vertices, the rasterizer must figure out which pixels in the frame
buffer fill the triangle. Output is a set of fragments for each primitive. A fragment is like a
potential pixel. Fragments can carry depth information used to figure out if they lie behind
other fragments for a given pixel.
5. Fragment processing: update pixels in the frame buffer. some fragments may not be
visible. texture mapping and bump mapping. blending.
Other rendering approaches include

Other rendering approaches

• Ray tracing, radiosity, and photon mapping

• more physical but don’t achieve real-time performance

ray-tracing comes close to real time
none come close to to the performance of pipeline architectures
GPUs implement this graphics pipeline
- for many years, these pipeline architectures had fixed functionality
- recently, the vertex processor and the fragment processor are now programmable
this opens the door for many features that were not part of the pipeline to become part
of the pipeline and hence become realtime - e.g., bump mapping
GPUs are also now being used for high performance computing that does not involve
graphics

3D graphics pipeline

• optimized for drawing 3D triangles with shared vertices

• map 3D vertex locations to 2D screen locations

• shade triangles and draw them in back to front order
using a z-buffer

• speed depends on # of triangles

• most operations on vertices can be represented using a
4D coordinate space - 3D position + homogeneous
coordinate for perspective viewing

• 4x4 matrices and 4-vectors

- use varying level of detail - fewer triangles for distant objects
1. construct shapes from primitives - points, lines, polygons, images, bitmaps, (mathematical
descriptions of objects) - specify the model

Segal and Akeley, 1994

OpenGL Rendering Pipeline

Interactive Computer Graphics, Angel and Shreiner

Simplified

Text

- Assembly-line approach to processing data
- Vertex data: data that is or will be converted to vertices: points, lines, polygons, surfaces
- Pixel data: images, bitmaps, pixels
- vertex data and pixel data follow different paths, but both eventually undergo rasterization
and per-fragment operations
- Display lists:
 - data can be save in display lists or processed in immediate mode
 - from display list it can be processed same as in immediate mode
- Evaluators:
 - all geometric data eventually reduced to vertices (evaluators for parametrized curves and
surfaces)
- Per-vertex operations: converts the vertices into primitives
 - 3D spatial coordinate transformed to screen coordinate + depth value
 - texture coordinates generated and transformed here
 - lighting calculations using material properties, light information, normals,
 - in newer versions of OpenGL, using a “vertex shader” is mandatory
 - GLSL
 - this replaces all the per-vertex operations
- Primitive assembly:
 - clipping is a major part
 - eliminate parts of geometry outside a half-space
 - remove points or for lines and polygons it can add points
 - results: complete geometric primitives: transformed and clipped vertices with color,
depth, and texture-coordinate values
- Pixel operations:
 - pixels take a different route through the OpenGL rendering pipeline
- Texture assembly:
 - apply textures to objects (Ch. 9)
- Rasterization:
 - convert both geometric and pixel data into _fragments_

The OpenGL Machine
R

The OpenGL! graphics system diagram, Version 1.1. Copyright " 1996 Silicon Graphics, Inc. All rights reserved.

TexCoord1

TexCoord2

TexCoord3

TexCoord4

Color3

Color4
Convert

RGBA to float

Index Convert
index to float

Current
Texture

Coordinates

Current
RGBA
Color

Current
Color
Index

Current
Normal

Normal3

Vertex2
RasterPos2

Vertex3
RasterPos3

Vertex4
RasterPos4

b
M

M*b

Model View
Matrix
Stack

OBJECT
COORDINATES

EYE
COORDINATES

M

Matrix
Control

MatrixMode
PushMatrix

PopMatrix

LoadIdentity
LoadMatrix

N
M

M*N

Matrix
Generators

Translate
Scale

Rotate
Frustum

Ortho

EdgeFlag
Current

Edge
Flag

Current
Raster

Position

CullFace

Polygon
Rasterization

Line
Segment

Rasterization

Point
Rasterization

Bitmap
Rasterization

Pixel
Rasterization

Polygon
Culling

Polygon
Mode

PolygonMode

PointSize

Enable/Disable
(Antialiasing/Stipple)

Unpack
Pixels

Bitmap

DrawPixels

TexImage

PolygonStipple

Pixel
Transfer

PixelZoom

PixelTransfer

PixelStore

Texel
Generation

Texture
Memory

TexParameter

Texture
Application Fog

TexEnv Fog
Enable/Disable Enable/Disable

Masking

ColorMask
IndexMask

DepthMask
StencilMask

Pack
Pixels

Coverage
(antialiasing)
Application

Pixel
Ownership

Test

Alpha
Test

(RGBA only)

Scissor
Test

Stencil
Test

Depth
Buffer
Test

Clear
Values

Clear
Control

Clear

ClearColor
ClearIndex
ClearDepth

ClearStencil

Blending
(RGBA only)

Dithering Logic Op

Frame Buffer

Scissor AlphaFunc
StencilOp

StencilFunc

Enable/Disable
Enable/Disable Enable/Disable Enable/Disable Enable/Disable Enable/Disable Enable/Disable

Enable/Disable

DepthFunc BlendFunc LogicOp

Frame Buffer
Control

DrawBuffer

Readback
Control

ReadBufferReadPixels

MultMatrix

Masking

b
M

M*b Normalize

Enable/Disable

TexGen
OBJECT_LINEAR

TexGen
EYE_LINEAR

TexGen
SPHERE_MAP

Enable/Disable

b
A

A*b

Texture
Matrix
Stack

Material
Parameters

Control

ColorMaterial
Material

Enable/Disable

Light
Parameters

RGBA Lighting Equation

Color Index Lighting Equation

Material
Parameters

Light Model
Parameters

Light
Enable/Disable

LightModel

M
M−T

Enable/Disable

Clamp to
[0,1]

Mask to

[0,2n−1]

Primitive
Assembly

Begin/End

TexGen

(Lighting)

EvalMesh
EvalPoint

EvalCoord

MapGrid

Map

Grid
Application

Map
Evaluation

Divide
Vertex

Coordinates
by
w

Apply
Viewport

DepthRange
Viewport

Flatshading

POINTS
RASTER POS.

LINE
SEGMENTS

POLYGONS

ShadeModel

Line
Clipping

Polygon
Clipping

Point
Culling

Clip
Planes

ClipPlane

Mb

b

b

(Vertex
Only)

Line
View Volume

Clipping

Polygon
View Volume

Clipping

Point
View Volume

Culling

M*b

Projection
Matrix
Stack

M
M−Tb

b

Feedback
Encoding

FeedbackBuffer

PassThrough

Selection
Control

SelectBuffer

RenderMode

Evaluator
Control

Rectangle
Generation

Rect

M*b

M*b

FrontFace

FrontFace

LineStipple

Enable/Disable
(Antialiasing)

PixelMap

Selection
Name
Stack

Selection
Encoding

InitNames

PopName
PushName

LoadName

Notes:
1. Commands (and constants) are shown without the
 gl (or GL_) prefix.
2. The following commands do not appear in this
 diagram: glAccum, glClearAccum, glHint,
 display list commands, texture object commands,
 commands for obtaining OpenGL state
 (glGet commands and glIsEnabled), and
 glPushAttrib and glPopAttrib. Utility library
 routines are not shown.
3. After their exectution, glDrawArrays and
 glDrawElements leave affected current values
 indeterminate.
4. This diagram is schematic; it may not directly
 correspond to any actual OpenGL implementation.

Convert
normal coords

 to float

Enable/Disable

TexSubImage

CopyPixels
CopyTexImage

CopyTexSubImage

PolygonOffset

LineWidth

Enable/Disable
(Antialiasing)

EdgeFlagPointer
TexCoordPointer

ColorPointer
IndexPointer

NormalPointer

VertexPointer

InterLeavedArrays

 EnableClientState
DisableClientState

DrawElements

ArrayElement

Vertex
Array

Control

t 0

r 0

q 1

A 1

z 0

w 1

Key to OpenGL Operations

Primitives Fragments

Vertices

Feedback
&

Selection

Input
Conversion

&
Current
Values

Texture Coordinate
Generation

Evaluators
&

Vertex Arrays

Lighting

Matrix
Control Clipping, Perspective,

and
Viewport Application Rasteriz−

ation Texturing,
Fog,
and

Antialiasing

Per−Fragment Operations

Frame Buffer
&

Frame Buffer ControlPixels

DrawArrays

- open up file to look at this more closely

48

OpenGL Libraries

•OpenGL core library (gl.h)
-OpenGL32 on Windows
-GL on most unix/linux systems

•OpenGL Utility Library -GLU (glu.h)
-avoids having to rewrite code

•OpenGL Utility Library -GLUT (glut.h)
-Provides functionality such as:

• Open a window
• Get input from mouse and keyboard
• Menus

- GL
 - no windowing commands
 - no commands for higher-level geometry - you build these using primitives (points, lines,
polygons)
- GLU - standard in every implementation
- OpenGL Utility library provides modeling support
 - quadratic surfaces, NURBS curves and surfaces

49

Software Organization

GLUT

GLU

GLX windows

software and/or hardware

application program

OpenGL Motif
widget or similar

Simple OpenGL program
#include <whateverYouNeed.h>

main() {

 InitializeAWindowPlease();

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0, 1.0, 1.0);
 glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
 glBegin(GL_POLYGON);
 glVertex3f(0.25, 0.25, 0.0);
 glVertex3f(0.75, 0.25, 0.0);
 glVertex3f(0.75, 0.75, 0.0);
 glVertex3f(0.25, 0.75, 0.0);
 glEnd();
 glFlush();

 UpdateTheWindowAndCheckForEvents();
}

OpenGL Programming Guide, 7th Ed.

- blue are placeholders for windowing system commands
-can replace blue code with calls to glut

Simple OpenGL program
#include<GL/glut.h>

void init() {
 glClearColor(0.0, 0.0, 0.0, 0.0);
}

void display() {
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0, 1.0, 1.0);
 glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
 glBegin(GL_POLYGON);
 glVertex3f(0.25, 0.25, 0.0);
 glVertex3f(0.75, 0.25, 0.0);
 glVertex3f(0.75, 0.75, 0.0);
 glVertex3f(0.25, 0.75, 0.0);
 glEnd();
 glFlush();
}
main() {
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (FB_WIDTH, FB_HEIGHT);
 glutCreateWindow ("Test OpenGL Program");
 init();
 glutDisplayFunc(display);
 glutMainLoop();
}

- blue are placeholders for windowing system commands
-can replace blue code with calls to glut

END

