
CS230 : Computer Graphics
Lecture 8

Tamar Shinar
Computer Science & Engineering

UC Riverside

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processorVertices Pixels

3D graphics pipeline

Triangle rasterization

Which pixels should be used
to approximate a triangle?

Triangle rasterization issues

Who should fill in shared edge?

Which pixels should be used
to approximate a triangle?

but who should fill in pixels for a shared edge?

Who should fill in shared edge?

Which pixels should be used
to approximate a triangle?

give to triangle that contains pixel center
- but we have some ties
why can’t neither/both triangles draw the pixel?
 neither: gaps
 both: indeterminacy (due to indeterminate drawing order), incorrect, e.g., if both triangles
are partially transparent
we want a unique assignment

Use Midpoint Algorithm for edges and fill in?

Which pixels should be used
to approximate a triangle?

That could be one possibility but we use a different approach based on barycentric
coordinates

Use an approach based on
barycentric coordinates

Which pixels should be used
to approximate a triangle?

For each pixel, we compute its barycentric coordinates
If the coordinates are all >= 0, then the pixel is covered by the triangle

We can interpolate attributes
using barycentric coordinates

http://jtibble.dyndns.org/graphics/eecs487/eecs487.html

Gouraud shading
(Gouraud, 1971)

Using barycentric coordinates also has the advantage that we can easily interpolate colors or
other attributes from triangle vertices

http://jtibble.dyndns.org/graphics/eecs487/eecs487.html
http://jtibble.dyndns.org/graphics/eecs487/eecs487.html

Triangle rasterization algorithm

for all x do
 for all y do
 compute for (x,y)
 if then

 drawpixel(x,y) with color c

Triangle rasterization algorithm

for all x do
 for all y do
 compute for (x,y)
 if then

 drawpixel(x,y) with color c

the rest of the algorithm is to make the steps in red more efficient

Triangle rasterization algorithm

for x in [x_min, x_max]
 for y in [y_min, y_max]
 compute for (x,y)
 if then

 drawpixel(x,y) with color c

use a bounding rectangle

for x in [x_min, x_max]
 for y in [y_min, y_max]

 if then

 drawpixel(x,y) with color c

Triangle rasterization algorithm

<whiteboard> : computing alpha, beta, and gamma

for x in [x_min, x_max]
 for y in [y_min, y_max]

 if then

 drawpixel(x,y) with color c

Triangle rasterization algorithm
Optimizations?

1. can make computation of bary. coords. incremental
- f(x,y) = Ax+By+C
- f(x+1,y) = f(x,y) + A
2. color computation can also be made incremental
3. alpha > 0 and beta > 0 and gamma > 0 (if true => they are also less than one)

for x in [x_min, x_max]
 for y in [y_min, y_max]

 if then

 drawpixel(x,y) with color c

Triangle rasterization algorithm
Optimizations?

make computation of bary. coords. incremental
color can also be computed incrementally

don’t need to check upper bound

1. can make computation of bary. coords. incremental
- f(x,y) = Ax+By+C
- f(x+1,y) = f(x,y) + A
2. color computation can also be made incremental
3. alpha > 0 and beta > 0 and gamma > 0 (if true => they are also less than one)

for x in [x_min, x_max]
 for y in [y_min, y_max]

 if then
 if then

 drawpixel(x,y) with color c

Triangle rasterization algorithm
dealing with shared triangle edges

- compute f_12(r), f_20(r) and f_01(r) and make sure r doesn’t hit a line

Clipping

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processorVertices Pixels

3D graphics pipeline

Perspective
transformation
incorrectly
maps vertices
behind the eye

Perspective
transformation
incorrectly
maps vertices
behind the eye

Need to clip before
the perspective divide

Clipping usually takes place in one of two places:
- in world coordinates against the six sides of the view volume, or
- after the 4D transformation but before perspective division (i.e., in homogenous
coordinates)

Clip triangle against
a plane

Simple pipeline examples

• Simple 2D pipeline

• application inputs pixel coordinates, pipeline only does
the rasterization phase and overwrites framebuffer
contents

• Simple 3D pipeline

• viewing transformation (camera, projection, and
viewport), followed by rasterization

but how to deal with hidden surfaces?

Hidden Surface Removal

Painter’s algorithm

draw primitives in
back-to-front order

problem:
triangle

intersection

Painter’s algorithm

draw primitives in
back-to-front order

who’s in front of whom?

problem:
occlusion cycle

draw primitives in
back-to-front order

Painter’s algorithm

also, sorting primitives by depth is slow

Use a z-buffer for hidden
surface removal

at each pixel, record distance to the closest
object that has been drawn in a depth buffer

Use a z-buffer for hidden
surface removal

at each pixel, record distance to the closest
object that has been drawn in a depth buffer

with z-bufferwithout z-buffer

- assume both spheres of the same size, red drawn last

Use a z-buffer for hidden
surface removal

with z-bufferwithout z-buffer

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processorVertices Pixels

done in the fragment blending phase
- each fragment must carry a depth

Use a z-buffer for hidden
surface removal

http://www.beyond3d.com/content/articles/41/

graphics memory contains the previous color value and associated z value.
computing a new color and z value. Compare z-values and if new z value is bigger than old
z value, overwrite

http://www.beyond3d.com/content/articles/41/
http://www.beyond3d.com/content/articles/41/

Backface culling: another way
to eliminate hidden geometry

this is only okay for closed surfaces

Hidden Surface Removal in
OpenGL

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

glEnable(GL_DEPTH_TEST);

glEnable(GL_CULL_FACE);

For a perspective transformation, there is more precision
in the depth buffer for z-values closer to the near plane

Shading Polygonal Geometry

Smooth surfaces are often
approximated by polygons

Shading approaches:

1. Flat
2. Smooth (Gouraud)
3. Phong

each polygon is flat and has a well-defined normal

Flat Shading

valid for light at inf
and viewer at inf

and faceted surfaces

do the shading
calculation once
per polygon

In general, l, n, and v vary from point to point on a surface. If we assume a distant viewer, v
can be thought of as constant. If we assume a distant light source, l can be thought of as
constant. For a flat polygon, n is constant.

If the light source or viewer is not at inf, we need heuristic for picking color - e.g., first
vertex, or polygon center

Mach Band Effect

Flat shading doesn’t usually look too good.
The lateral inhibition effect makes flat shading seem even worse.

Smooth Shading

do the shading
calculation once

per vertex

We assign the vertex normals based on the surrounding polygon normals

39

Interpolating Normals

• Must renormalize

40

Interpolating Normals

• Must renormalize

41

Interpolating Normals

• Must renormalize

We can interpolate attributes
using barycentric coordinates

http://jtibble.dyndns.org/graphics/eecs487/eecs487.html

Gouraud shading
(Gouraud, 1971)

Using barycentric coordinates also has the advantage that we can easily interpolate colors or
other attributes from triangle vertices

http://jtibble.dyndns.org/graphics/eecs487/eecs487.html
http://jtibble.dyndns.org/graphics/eecs487/eecs487.html

Phong Shading

do the shading
calculation once
per fragment

Phong shading requires normals to be interpolated across each polygon -- this wasn’t part of
the fixed function pipeline.
This can now be done in the pipeline in the fragment shader.

Comparison

Flat Gouraud Phong

- Phong interpolation looks smoother -- can see edges on the Gouraud model
- but Phong is a lot more work
- both Phong and Gouraud require vertex normals
- both Phong and Gouraud leave silhouettes

Problems with Interpolated
Shading

• Polygonal silhouette

• Perspective distortion

• Orientation dependence

• Unrepresentative surface normals

[F
ol

ey
, v

an
 D

am
, F

ei
ne

r,
H

ug
he

s]

Programmable Shading

Fixed-Function Pipeline

CPU GPU

User
Program

Geometry
Processing

Pixel
Processing

primitives
2D screen

coordinates

Control pipeline through GL state variables

- The application supplies geometric primitives through a graphics API such as OpenGL or
DirectX
- control of pipeline operation through state variables only

Programmable Pipeline

CPU GPU

User
Program

Geometry
Processing

Pixel
Processing

primitives
2D screen

coordinates

vertex shader
pixel shader

Supply shader programs to be executed on GPU
as part of pipeline

- can supply shader programs to carry out vertex processing, geometry processing, and pixel
processing

Graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Fragment Generation

Fragment Processing

Pixel Operations

Fixed-function

Programmable

Memory Bu!ers
Vertex Data Bu!ers

Textures

Output image (pixels)

Textures

Textures

Primitive Processing

Vertex stream

Vertex stream

Primitive stream

Primitive stream

Fragment stream

Fragment stream

Vertices

Primitives

Fragments

Pixels

[Shirley and M
arschner]

Phong reflectance in vertex and pixel shaders using GLSL

Vertex Shader (Gouraud interpolation)

Pixel Shader (Phong interpolation)

Phong reflectance as a vertex shader
- vertex shaders can be used to move/animate verts
- linear interpolation of vertex lighting
as a fragment shader
- each fragment is calculated individually - don’t know about neighboring pixles

Dawn, NVIDIA
Rusty car shader, NVIDIA

Call of Juarez DX10 Benchmark, ATI

Programmable shader examples from NVIDIA and ATI

