
CS230 : Computer Graphics
Lecture 7

Tamar Shinar
Computer Science & Engineering

UC Riverside

Rendering approaches

1. image-oriented

foreach pixel ...

2. object-oriented

 foreach object ... geometry image3D rendering
pipeline

object-oriented rendering
 - e.g., hardware: OpenGL graphics pipeline, Direct3D
 - software: Renderman (REYES)
task: figure out where a point in the geometry will land on the final image pixels

3D graphics pipeline

Vertex processing: coordinate transformations and color

Clipping and primitive assembly: output is a set of primitives

Rasterization: output is a set of fragments for each primitive

Fragment processing: update pixels in the frame buffer

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processorVertices Pixels

the pipeline is best when we are doing the same operations on many data sets
 -- good for computer graphics!! where we process larges sets of vertices and pixels in the
same manner
1. Geometry: objects - made of primitives - made of vertices
2. Vertex processing: coordinate transformations and color
3. Clipping and primitive assembly: use clipping volume. must be primitive by primitive
rather than vertex by vertex. therefore vertices must be assembled into primitives before
clipping can take place. Output is a set of primitives.
4. Rasterization: primitives are still in terms of vertices -- must be converted to pixels. E.g.,
for a triangle specificied by 3 vertices, the rasterizer must figure out which pixels in the frame
buffer fill the triangle. Output is a set of fragments for each primitive. A fragment is like a
potential pixel. Fragments can carry depth information used to figure out if they lie behind
other fragments for a given pixel.
5. Fragment processing: update pixels in the frame buffer. some fragments may not be
visible. texture mapping and bump mapping. blending.

Graphics Pipeline
(slides courtesy K. Fatahalian)

Vertex processing

v0

v1

v2

v3

v4

v5

Vertices

Vertices are transformed into “screen space”

Vertex
processor

Clipper and
primitive
assembler

Rasterizer Fragment
processor

Vertices Pixels

Vertex processing

v0

v1

v2

v3

v4

v5

Vertices

Vertices are transformed into “screen space”

EACH VERTEX IS
TRANSFORMED

INDEPENDENTLY

Vertex
processor

Clipper and
primitive
assembler

Rasterizer Fragment
processor

Vertices Pixels

Primitive processing

v0

v1

v2

v3

v4

v5

Vertices

v0

v1

v2

v3

v4

v5

Primitives
(triangles)

Then organized into primitives that are clipped
and culled…

Vertex
processor

Clipper and
primitive
assembler

Rasterizer Fragment
processor

Vertices Pixels

Rasterization

Primitives are rasterized into “pixel fragments”

Fragments

Vertex
processor

Clipper and
primitive
assembler

Rasterizer Fragment
processor

Vertices Pixels

Rasterization

Primitives are rasterized into “pixel fragments”

EACH PRIMITIVE IS RASTERIZED
INDEPENDENTLY

Vertex
processor

Clipper and
primitive
assembler

Rasterizer Fragment
processor

Vertices Pixels

Fragment processing

Shaded fragments

Fragments are shaded to compute a color at each pixel

Vertex
processor

Clipper and
primitive
assembler

Rasterizer Fragment
processor

Vertices Pixels

Fragment processing

EACH FRAGMENT IS PROCESSED
INDEPENDENTLY

Fragments are shaded to compute a color at each pixel

Vertex
processor

Clipper and
primitive
assembler

Rasterizer Fragment
processor

Vertices Pixels

Pixel operations

Pixels

Fragments are blended into the frame bu!er at
their pixel locations (z-bu!er determines visibility)

Vertex
processor

Clipper and
primitive
assembler

Rasterizer Fragment
processor

Vertices Pixels

Pipeline entities

v0

v1

v2

v3

v4

v5
v0

v1

v2

v3

v4

v5

Vertices Primitives Fragments

Pixels Fragments (shaded)

Rasterization

What is rasterization?

Rasterization is the process of determining
which pixels are “covered” by the primitive

What is rasterization?

input: primitives output: fragments

enumerate the pixels covered by a primitive

interpolate attributes across the primitive

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processorVertices Pixels

- output 1 fragment per pixel covered by the primitive

Rasterization

Compute integer coordinates for pixels covered by
 the 2D primitives

Algorithms are invoked many, many times and
so must be efficient

Output should be visually pleasing, for example,
lines should have constant density

Obviously, should be able to draw all
possible 2D primitives

Screen coordinates

we’ll assume stuff has been converted to screen coordinates

Line Representation

Implicit Line Equation

<whiteboard>

<whiteboard>: work out the implicit line equation in terms of X0 and X1

Implicit Line Equation

decision variable, d

<whiteboard>: work out the implicit line equation in terms of X0 and X1

Implicit Line Equation

decision variable, d

<whiteboard>: work out the implicit line equation in terms of X0 and X1

Implicit Line Equation

decision variable, d

<whiteboard>: work out the implicit line equation in terms of X0 and X1

Implicit Line Equation

decision variable, d

<whiteboard>: work out the implicit line equation in terms of X0 and X1

Line Drawing

Which pixels should be used
to approximate a line?

Draw the thinnest possible
line that has no gaps

Line drawing algorithm

y = y0
for x = x0 to x1 do
 draw(x,y)
 if (<condition>) then
 y = y+1

(case: 0 < m <= 1)

•move from left to right
•choose between

(x+1,y) and (x+1,y+1)

draw pixels from left to right, occasionally move up

Line drawing algorithm

y = y0
for x = x0 to x1 do
 draw(x,y)
 if (<condition>) then
 y = y+1

(case: 0 < m <= 1)

•move from left to right
•choose between

(x+1,y) and (x+1,y+1)

draw pixels from left to right, occasionally move up

Use the midpoint between the
two pixels to choose

If the line falls below the midpoint, use the bottom pixel
if the line falls above the midpoint, use the top pixel

Use the midpoint between the
two pixels to choose

If the line falls below the midpoint, use the bottom pixel
if the line falls above the midpoint, use the top pixel

Use the midpoint between the
two pixels to choose

If the line falls below the midpoint, use the bottom pixel
if the line falls above the midpoint, use the top pixel

Use the midpoint between the
two pixels to choose

implicit line equation:

evaluate f at midpoint:
<whiteboard>

<whiteboard>: work out the implicit line equation in terms of X0 and X1
Question: will f(x,y+1/2) be > 0 or < 0?

Use the midpoint between the
two pixels to choose

implicit line equation:

evaluate f at midpoint:

this means midpoint is above the line -> line is closer to bottom pixel

Line drawing algorithm
(case: 0 < m <= 1)

y = y0
for x = x0 to x1 do
 draw(x,y)
 if () then
 y = y+1

can now fill in the condition

We can make the Midpoint
Algorithm more efficient

y = y0
for x = x0 to x1 do
 draw(x,y)
 if () then
 y = y+1

in each iteration we draw the current pixel and we evaluate the line equation at the next
midpoint halfway above the current pixel

We can make the Midpoint
Algorithm more efficient

by making it incremental!

Assume we have drawn the last red pixel and evaluated the line equation at the next (Red)
midpoint
There are two possible outcomes:
1. we will choose the bottom pixel. In this case the next midpoint will be at the same level (x
+1,y)
2. we will choose the top pixel. In this case the next midpoint will be one level up (x+1, y+1)
The line equation at these next midpoints can be evaluated incrementally using the update
formulas shown.

We can make the Midpoint
Algorithm more efficient

As we move over one pixel to the right, we will choose either (x+1,y) (yellow) or (x+1,y+1)
(pink) and the next midpoint we will evaluate will be eiterh

We can make the Midpoint
Algorithm more efficient

We can make the Midpoint
Algorithm more efficient

y = y0
d = f(x0+1,y0+1/2)
for x = x0 to x1 do
 draw(x,y)
 if (d<0) then
 y = y+1
 d = d+(y0-y1)+(x1-x0)
 else
 d = d+(y0-y1)

algorithm is incremental and uses only integer arithmetic

Adapt Midpoint Algorithm for
other cases

case: 0 < m <= 1

Adapt Midpoint Algorithm for
other cases

case: -1 <= m < 0

Adapt Midpoint Algorithm for
other cases

case: 1 <= m
or m <= -1

Line drawing references

• the algorithm we just described is the Midpoint Algorithm
(Pitteway, 1967), (van Aken and Novak, 1985)

• draws the same lines as the Bresenham Line Algorithm
(Bresenham, 1965)

Triangles

barycentric coordinates

barycentric coordinates

barycentric coordinates

barycentric coordinates

barycentric coordinates

barycentric coordinates

What are ?

<whiteboard>

