CS230 : Computer Graphics Lecture 7

Tamar Shinar
Computer Science \& Engineering
UC Riverside

Rendering approaches

I. image-oriented

 foreach pixel ...
2. object-oriented foreach object ...

object-oriented rendering

- e.g., hardware: OpenGL graphics pipeline, Direct3D
- software: Renderman (REYES)
task: figure out where a point in the geometry will land on the final image pixels

3D graphics pipeline

Vertex processing: coordinate transformations and color

Clipping and primitive assembly: output is a set of primitives

Rasterization: output is a set of fragments for each primitive

Fragment processing: update pixels in the frame buffer

the pipeline is best when we are doing the same operations on many data sets
-- good for computer graphics!! where we process larges sets of vertices and pixels in the same manner

1. Geometry: objects - made of primitives - made of vertices
2. Vertex processing: coordinate transformations and color
3. Clipping and primitive assembly: use clipping volume. must be primitive by primitive rather than vertex by vertex. therefore vertices must be assembled into primitives before clipping can take place. Output is a set of primitives.
4. Rasterization: primitives are still in terms of vertices -- must be converted to pixels. E.g., for a triangle specificied by 3 vertices, the rasterizer must figure out which pixels in the frame buffer fill the triangle. Output is a set of fragments for each primitive. A fragment is like a potential pixel. Fragments can carry depth information used to figure out if they lie behind other fragments for a given pixel.
5. Fragment processing: update pixels in the frame buffer. some fragments may not be visible. texture mapping and bump mapping. blending.

Graphics Pipeline
 (slides courtesy K. Fatahalian)

Vertex processing
Vertices are transformed into "screen space"

Vertices

Vertex processing
Vertices are transformed into "screen space"

Vertices

Primitive processing

Then organized into primitives that are clipped and culled...

Vertices
Primitives
(triangles)

Rasterization

Primitives are rasterized into "pixel fragments"

Rasterization

Primitives are rasterized into "pixel fragments"

Fragment processing

Fragments are shaded to compute a color at each pixel

Shaded fragments

Fragment processing

Fragments are shaded to compute a color at each pixel

Pixel operations

Fragments are blended into the frame buffer at their pixel locations (z-buffer determines visibility)

Pixels

Pipeline entities

Vertices

Primitives

Fragments

Fragments (shaded)

Pixels

Rasterization

What is rasterization?

Rasterization is the process of determining which pixels are "covered" by the primitive

What is rasterization?

input: primitives output: fragments
enumerate the pixels covered by a primitive interpolate attributes across the primitive

Rasterization

Compute integer coordinates for pixels covered by the 2D primitives

Algorithms are invoked many, many times and so must be efficient

Output should be visually pleasing, for example, lines should have constant density

Obviously, should be able to draw all possible 2D primitives

Screen coordinates

Line Representation

Math Review

-2D math for lines

How do we determine the equation of the line?

Math Review

-2D math for lines

Slope-Intercept formula for a line

$$
\begin{aligned}
\text { Slope }= & (Y 2-Y 1) /(X 2-X 1) \\
& (Y-Y 1) /(X-X 1)
\end{aligned}
$$

Solving For Y
$Y=[(Y 2-Y 1) /(X 2-X 1)] X$

$$
+[-(\mathrm{Y} 2-\mathrm{Y} 1) /(\mathrm{X} 2-\mathrm{X} 1)] \mathrm{X} 1+\mathrm{Y} 1 \text { or }
$$

$Y=m X+b$

Math Review

-Explicit (functional) representation $y=f(x)$
y is the dependent, x independent variable

Find value of y from value of x
Example, for a line:
for a circle:
$y=m x+b$
$x^{2}+y^{2}=r^{2}$

Math Review

- Parametric Representation

$$
x=x(u), y=y(u)
$$

where new parameter u (or often t) determines the value of x and y (and possibly z) for each point
x, y treated the same, axis invariant

Math Review

Parametric formula for a line

$\mathrm{X}=\mathrm{X} 1+\mathrm{t}(\mathrm{X} 2-\mathrm{X} 1)$
$Y=Y 1+t(Y 2-Y 1)$
for parameter t from 0 to 1

Therefore, when

$$
\begin{aligned}
& t=0 \text { we get }(X 1, Y 1) \\
& t=1 \text { we get }(X 2, Y 2)
\end{aligned}
$$

Varying t gives the points along the line segment

Implicit Line Equation

$$
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=0
$$ <whiteboard>

<whiteboard>: work out the implicit line equation in terms of X0 and X1

Implicit Line Equation

decision variable, d

$$
\begin{gathered}
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=d \\
d>0 \\
d<0 \\
d=0
\end{gathered}
$$

<whiteboard>: work out the implicit line equation in terms of X0 and X1

Implicit Line Equation

decision variable, d

$$
\begin{gathered}
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=d \\
d>0 \\
d<0 \\
d=0
\end{gathered}
$$

<whiteboard>: work out the implicit line equation in terms of X0 and X1

Implicit Line Equation

decision variable, d

$$
\begin{gathered}
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=d \\
d>0 \\
d<0 \\
d=0
\end{gathered}
$$

<whiteboard>: work out the implicit line equation in terms of X0 and X1

Implicit Line Equation

decision variable, d

$$
\begin{gathered}
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=d \\
d>0 \\
d<0 \\
d=0
\end{gathered}
$$

$$
\mathbf{X}_{0}=\left(x_{0}, y_{0}\right)^{+}
$$

<whiteboard> : work out the implicit line equation in terms of X0 and X1

Line Drawing

Which pixels should be used to approximate a line?

Draw the thinnest possible line that has no gaps

DDA algorithm for lines

Parametric Lines: the DDA algorithm (digital differential analyzer)

$$
\begin{aligned}
Y_{i+1} & =m x_{i+1}+B \\
& =m\left(x_{i}+\Delta x\right)+B \quad \Delta x=\left(x_{i+1}-x_{i}\right) \\
& =y_{i}+m(\Delta x) \quad<- \text { must round to find int }
\end{aligned}
$$

If we increment by 1 pixel in X , we turn on [xi, Round(yi)] or same for Y if $\mathrm{m}>1$

Scan conversion for lines

DDA includes Round(); and this is fairly slow

For Fast Lines, we want to do only integer math +,-
We do this using the Midpoint Algorithm
To do this, lets look at lines with y-intercept B and with slope between 0 and 1 :

$$
\begin{aligned}
y=(d y / d x) x & +B \Longrightarrow \\
f(x, y) & =(d y) x-(d x) y+B(d x)=0
\end{aligned}
$$

Removes the division => slope treated as 2 integers

Line drawing algorithm

 (case: $0<m<=$ I)$$
\begin{aligned}
& y=y 0 \\
& \text { for } x=x 0 \text { to } x l \text { do }
\end{aligned}
$$

draw(x,y)
if (<condition>) then

$$
y=y+1
$$

- move from left to right -choose between

$$
(x+I, y) \text { and }(x+I, y+I)
$$

Line drawing algorithm (case: $0<\mathrm{m}<=$ I)

$$
\begin{aligned}
& y=y 0 \\
& \text { for } x=x 0 \text { to } x I \text { do } \\
& \quad \operatorname{draw}(x, y) \\
& \text { if }(<\text { condition }>) \text { then } \\
& \quad y=y+1
\end{aligned}
$$

- move from left to right
 - choose between

$$
(x+I, y) \text { and }(x+I, y+I)
$$

Use the midpoint between the two pixels to choose

If the line falls below the midpoint, use the bottom pixel if the line falls above the midpoint, use the top pixel

Use the midpoint between the two pixels to choose

If the line falls below the midpoint, use the bottom pixel if the line falls above the midpoint, use the top pixel

Use the midpoint between the two pixels to choose

If the line falls below the midpoint, use the bottom pixel if the line falls above the midpoint, use the top pixel

Use the midpoint between the two pixels to choose

implicit line equation:

$$
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=0
$$

<whiteboard>

evaluate f at midpoint:

$$
f\left(x, y+\frac{1}{2}\right) ? 0
$$

<whiteboard>: work out the implicit line equation in terms of X0 and X1 Question: will $f(x, y+1 / 2)$ be >0 or <0 ?

Use the midpoint between the two pixels to choose

implicit line equation:

$$
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=0
$$

evaluate f at midpoint:

$$
f\left(x, y+\frac{1}{2}\right)>0
$$

this means midpoint is above the line -> line is closer to bottom pixel

Line drawing algorithm (case: $0<m<=$ I)

$$
\begin{aligned}
& \begin{array}{l}
\mathbf{y}=\mathbf{y} 0 \\
\text { for } \mathbf{x}=\mathbf{x} 0 \text { to } \mathbf{x I} \text { do } \\
\mathbf{d r a w}(\mathbf{x}, \mathbf{y}) \\
\text { if }\left(f\left(x+1, y+\frac{1}{2}\right)<0\right) \text { then } \\
\quad \mathbf{y}=\mathbf{y}+\mathbf{1}
\end{array} \\
& \hline
\end{aligned}
$$

can now fill in the condition

We can make the Midpoint Algorithm more efficient

$$
\begin{array}{|l}
\mathbf{y}=\mathbf{y} \mathbf{0} \\
\text { for } \mathbf{x}=\mathbf{x} 0 \text { to } \mathbf{x I} \text { do } \\
\mathbf{d r a w}(\mathbf{x}, \mathbf{y}) \\
\text { if }\left(f\left(x+1, y+\frac{1}{2}\right)<0\right) \text { then } \\
\mathbf{y}=\mathbf{y}+\mathbf{1}
\end{array}
$$

in each iteration we draw the current pixel and we evaluate the line equation at the next midpoint halfway above the current pixel

We can make the Midpoint Algorithm more efficient

by making it incremental!

$f(x, y)=\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1}-x_{1} y_{0}=0$

$$
\begin{gathered}
f(x+1, y)=f(x, y)+\left(y_{0}-y_{1}\right) \\
f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
\end{gathered}
$$

Assume we have drawn the last red pixel and evaluated the line equation at the next (Red) midpoint
There are two possible outcomes:

1. we will choose the bottom pixel. In this case the next midpoint will be at the same level (x $+1, y)$
2. we will choose the top pixel. In this case the next midpoint will be one level up ($x+1, y+1$) The line equation at these next midpoints can be evaluated incrementally using the update formulas shown.

We can make the Midpoint Algorithm more efficient

$$
f\left(x+1, y+\frac{1}{2}\right)>0
$$

$$
f(x, y)=\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1}-x_{1} y_{0}=0
$$

$$
f(x+1, y)=f(x, y)+\left(y_{0}-y_{1}\right)
$$

$$
f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
$$

As we move over one pixel to the right, we will choose either ($x+1, y$) (yellow) or ($x+1, y+1$) (pink) and the next midpoint we will evaluate will be eiterh

We can make the Midpoint Algorithm more efficient

$$
f\left(x+1, y+\frac{1}{2}\right)<0
$$

$$
f(x, y)=\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1}-x_{1} y_{0}=0
$$

$$
f(x+1, y)=f(x, y)+\left(y_{0}-y_{1}\right)
$$

$$
f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
$$

We can make the Midpoint Algorithm more efficient

$$
\begin{aligned}
& y=y 0 \\
& d=f(x 0+1, y 0+I / 2) \\
& \text { for } x=x 0 \text { to } x I \text { do } \\
& d r a w(x, y) \\
& \text { if }(d<0) \text { then } \\
& y=y+1 \\
& d=d+(y 0-y l)+(x I-x 0) \\
& \text { else } \\
& d=d+(y 0-y l) \\
& \hline
\end{aligned}
$$

$f(x+1, y)=f(x, y)+\left(y_{0}-y_{1}\right)$

$f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)$
algorithm is incremental and uses only integer arithmetic

Adapt Midpoint Algorithm for other cases

case: $0<m<=$ |

Adapt Midpoint Algorithm for other cases

case: - l $<=$ m < 0

Adapt Midpoint Algorithm for other cases

Line drawing references

- the algorithm we just described is the Midpoint Algorithm (Pitteway, 1967), (van Aken and Novak, I985)
- draws the same lines as the Bresenham Line Algorithm (Bresenham, 1965)

Triangles

barycentric coordinates

barycentric coordinates

barycentric coordinates-
barycentric coordinates,
$\gamma=-\overline{1}$

barycentric coordinates,
barycentric coordinates-

barycentric coordinates

$$
\mathbf{p}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}
$$

What are (α, β, γ) ?
<whiteboard>

