CS230 : Computer Graphics Lecture 6:Viewing Transformations

Tamar Shinar
Computer Science \& Engineering
UC Riverside

Rendering approaches

I. image-oriented
foreach pixel ...

2. object-oriented foreach object ...

Projection: map 3D scene to 2D image

OpenGL Super Bible, 5th Ed.

Orthographic projection

Orthographic, or parallel projection

- parallel lines appear parallel (unlike perspective proj.)
- equal length lines appear equal length (unlike perspective proj.)

Perspective projection

two-point perspective

three-point perspective

Viewing Transformations

Viewing transformations

World space
Viewing transformations

Screen space

- Map points from their 3D locations to their positions in a 2D view

The viewing transformation also project any point along pixel's viewing ray back to the pixel's position in screen (or image) space

Decomposition of viewing transforms

Viewing transforms depend on: camera position and orientation, type of projection, field of view, image resolution
there are several names for these spaces: "camera space" = "eye space", "canonical view volume" = "clip space" = "normalized device coordinates", "screen space=pixel coordinates" and for the transforms: "camera transformation" = "viewing transformation"

Viewport transform

$$
\begin{aligned}
(x, y, z) \rightarrow & \left(x^{\prime}, y^{\prime}, z^{\prime}\right) \\
& x^{\prime} \in\left[-.5, n_{x}-.5\right] \\
(x, y, z) \in[-1,1]^{3} \quad & y^{\prime} \in\left[-.5, n_{y}-.5\right] \\
& z^{\prime} \in[-1,1]
\end{aligned}
$$

Viewport transform

Orthographic Projection Transform

Camera Transform

Camera Transform

How do we specify the camera configuration?
(orthogonal case)

Camera Transform

How do we specify the camera configuration? $\begin{gathered}\text { eye } \\ \text { position }\end{gathered}$

Camera Transform

How do we specify the camera configuration? $\begin{gathered}\text { gaze } \\ \text { direction }\end{gathered}$

Camera Transform

How do we specify the camera configuration?
 up vector

Camera Transform

How do we specify the camera configuration?

Camera Transform

$$
\begin{aligned}
\mathbf{w} & =-\frac{\mathbf{g}}{\|\mathbf{g}\|} \\
\mathbf{u} & =\frac{\mathbf{t} \times \mathbf{w}}{\|\mathbf{t} \times \mathbf{w}\|} \\
\mathbf{v} & =\mathbf{w} \times \mathbf{u}
\end{aligned}
$$

$M_{\text {cam }}$ <whiteboard>

Perspective Viewing

rigid

parallel lines, angles preserved

affine
parallel lines preserved

rigid - translation and rotation only - parallel lines and angles are preserved
affine - scaling, shear, translation, rotation - parallel lines preserved, angles not preserved
projective - parallel lines and angles not preserved

Projective Transformations

note that the height, y^{\prime}, in camera space is proportional to y and inversely proportion to z. We want to be able to specify such a transformation with our 4×4 matrix machinery

Projective Transformations

How to represent this with 4×4 matrices?
 view
 plane

note that the height, y^{\prime}, in camera space is proportional to y and inversely proportion to z. We want to be able to specify such a transformation with our 4×4 matrix machinery

Projective Transformations

Example:

$$
M=\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & 3 & 0 \\
0 & \frac{2}{3} & \frac{1}{3}
\end{array}\right)
$$

Use 4th coordinate as the denominator

Note: this makes our homogeneous representation for points unique only up to a constant

Projective Transformations

Example:

$$
\left.\left(\begin{array}{rl}
\tilde{x} \\
\tilde{y} \\
\tilde{z} \\
w
\end{array}\right) \rightarrow \quad \begin{array}{rl}
x & =\frac{\tilde{x}}{w} \\
& y
\end{array}\right)=\frac{\tilde{y}}{w}
$$

We can now implement perspective projection!

Perspective Projection

note that both x and y will be transformed

Simple perspective projection

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right) \Rightarrow\left\{\begin{array}{l}
x^{\prime}=\frac{d}{z} x \\
y^{\prime}=\frac{d}{z} y \\
z^{\prime}=\frac{d}{z} z=d
\end{array}\right.
$$

This achieves a simple perspective projection onto the view plane $z=d$

but we've lost all information about z!

<whiteboard>

This simple projection matrix won't suffice. We need to preserve z information for later hidden surface removal.
whiteboard: derive P

Perspective Projection

$$
P=\left(\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -f n \\
0 & 0 & 1 & 0
\end{array}\right) \quad z^{\prime}=(n+f)-\frac{n f}{z}
$$

The perspective transformation does not preserve \mathbf{z} completely, but it preserves $\mathbf{z}=\mathbf{n}, \mathbf{f}$ and is monotone (preserves ordering) with respect to z

So far we've mapped the view frustum to a rectangular box. This rectangular box has the same near face as the view frustum. The far face has been mapped down to the far face of the box. This mapping is given by P. The bottom figure shows how lines in the view frustum get mapped to the rect. box.

We're not quite done yet thought, because the projection transform should map the view frustum to the canonical view volume.

$$
M_{\text {per }}=M_{\text {orth }} P
$$

We need a second mapping to get our points into the canonical view volume. This second mapping is a mapping from one box to another. So it's given by an orthographic mapping, M_orth. The final perspective transformation is the composition of P and $\mathrm{M}_{\mathbf{\prime}}$ orth.

