
CS230 : Computer Graphics
Lecture 6: Viewing Transformations

Tamar Shinar
Computer Science & Engineering

UC Riverside

Rendering approaches

1. image-oriented

foreach pixel ...

2. object-oriented

 foreach object ... geometry image3D rendering
pipeline

object-oriented rendering - e.g., OpenGL graphics pipeline, Renderman (REYES)
task: figure out where a point in the geometry will land on the final image pixels

OpenGL Super Bible, 5th Ed.

Projection:
map 3D scene
to 2D image

Orthographic projection

vector.tutsplus.com

Orthographic, or parallel projection
- parallel lines appear parallel (unlike perspective proj.)
- equal length lines appear equal length (unlike perspective proj.)

Perspective projection

www.artyfactory.com

http://www.artyfactory.com
http://www.artyfactory.com

two-point perspective three-point perspective

Viewing Transformations

Viewing transformations

• Map points from their 3D locations to their positions in a
2D view

World
space

Screen
space

Viewing transformations

World coordinates Screen
coordinates

The viewing transformation also project any point along pixel’s viewing ray back to the
pixel’s position in screen (or image) space

Decomposition of viewing transforms

Viewport
transform

Projection
transform

Camera
transform

•rigid body
transformation
•place camera at
origin

•x, y, z in [-1,1]
•depends on type
of projection

•map to pixel
coordinates

Viewing transforms depend on: camera position and orientation, type of
projection, field of view, image resolution

there are several names for these spaces: “camera space” = “eye space”, “canonical view
volume” = “clip space”= “normalized device coordinates”, “screen space=pixel coordinates”
and for the transforms: “camera transformation” = “viewing transformation”

Viewport transform

Viewport
transform

Projection
transform

Camera
transform

Viewport transform

<whiteboard>

Viewport
transform

Projection
transform

Camera
transform

Orthographic Projection Transform

Viewport
transform

Projection
transform

Camera
transform

<whiteboard>

Camera Transform

Viewport
transform

Projection
transform

Camera
transform

Camera Transform
How do we specify the camera configuration?

(orthogonal case)

Camera Transform
How do we specify the camera configuration?

eye
position

Camera Transform
How do we specify the camera configuration?

gaze
direction

Camera Transform
How do we specify the camera configuration?

up
vector

Camera Transform
How do we specify the camera configuration?

Camera Transform

<whiteboard>

Viewport
transform

Projection
transform

Camera
transform

Perspective Viewing

parallel lines,
angles preserved

parallel lines
 preserved

rigid - translation and rotation only - parallel lines and angles are
preserved
affine - scaling, shear, translation, rotation - parallel lines preserved,
angles not preserved
projective - parallel lines and angles not preserved

Projective Transformations

view
plane

note that the height, y’, in camera space is proportion to y and inversely proportion to z. We
want to be able to specify such a transformation with our 4x4 matrix machinery
note that the height, y’, in camera space is proportional to y and
inversely proportion to z. We want to be able to specify such a
transformation with our 4x4 matrix machinery

Projective Transformations

view
plane

note that the height, y’, in camera space is proportion to y and inversely proportion to z. We
want to be able to specify such a transformation with our 4x4 matrix machinery

How to represent this
with 4x4 matrices?

note that the height, y’, in camera space is proportional to y and
inversely proportion to z. We want to be able to specify such a
transformation with our 4x4 matrix machinery

Projective Transformations
[Shirley, M

arschner]

Example:

Note: this makes our homogeneous representation for unique only up to a constant

Use 4th coordinate
as the denominator

Note: this makes our homogeneous representation for points unique
only up to a constant

Projective Transformations
Example:

We can now implement
perspective projection!

[Shirley, M
arschner]

Perspective Projection

view
plane

[Shirley, M
arschner]

both x and y get
multiplied by d/z

note that both x and y will be transformed note that both x and y will be transformed

Simple perspective projection

This achieves a simple perspective projection
onto the view plane z = d

but we’ve lost all information about z!

<whiteboard>

This simple projection matrix won’t suffice. We need to preserve z information for later
hidden surface removal.
This simple projection matrix won’t suffice. We need to preserve z information for
later hidden surface removal.
whiteboard: derive P

Example:

Perspective Projection

The perspective transformation does not preserve z completely, but it preserves z = n, f and
is monotone (preserves ordering) with respect to z
The perspective transformation does not preserve z completely, but it
preserves z = n, f and is monotone (preserves ordering) with respect
to z

[Shirley, M
arschner]

So far we’ve mapped the view frustrum to a rectangular box. This rectangular box has the
same near face as the view frustrum. The far face has been mapped down to the far face of
the box. This mapping is given by P. The bottom figure shows how lines in the view
frustrum get mapped to the rect. box.

So far we’ve mapped the view frustum to a rectangular box. This
rectangular box has the same near face as the view frustum. The far
face has been mapped down to the far face of the box. This mapping is
given by P. The bottom figure shows how lines in the view frustum get
mapped to the rect. box.

We’re not quite done yet thought, because the projection transform should map the view
frustrum to the canonical view volume.
We’re not quite done yet thought, because the projection transform
should map the view frustum to the canonical view volume.

We need a second mapping to get our points into the canonical view volume. This second
mapping is a mapping from one box to another. So it’s given by an orthographic mapping,
M_orth. The final perspective transformation is the composition of P and M_orth.

We need a second mapping to get our points into the canonical view
volume. This second mapping is a mapping from one box to another.
So it’s given by an orthographic mapping, M_orth. The final perspective
transformation is the composition of P and M_orth.

