
CS230 : Computer Graphics
Lecture 4

Tamar Shinar
Computer Science & Engineering

UC Riverside

Shadows

Shadows

for each pixel do
 compute viewing ray
 if (ray hits an object with t in [0, inf]) then
 compute n
 evaluate shading model and set pixel to that color
 else
 set pixel color to the background color

Shadows

for each pixel do
 compute viewing ray
 if (ray hits an object with t in [0, inf]) then
 compute n
 evaluate shading model and set pixel to that color
 else
 set pixel color to the background color

Shadows

for each pixel do
 compute viewing ray
 if (ray hits an object with t in [0, inf]) then
 compute n
 // e.g., phong shading
 for each light

 add light’s ambient component
 compute shadow ray
 if (! shadow ray hits an object)
 add light’s diffuse and specular components

 else
 set pixel color to the background color

Reflections

- Reflective_Shader subclass of Phong shader

for each pixel do
 compute viewing ray
 if (ray hits an object with t in [0, inf]) then
 compute n
 evaluate shading model and set pixel to that color
 else
 set pixel color to the background color

Reflections

for each pixel do
 compute viewing ray
 if (ray hits an object with t in [0, inf]) then
 compute n
 evaluate shading model and set pixel to that color
 else
 set pixel color to the background color

Reflections

for each pixel do
 compute viewing ray
 pixel color = cast_ray(viewing ray)

cast_ray:
 if (ray hits an object with t in [0, inf]) then
 compute n
 return color = shade_surface
 else
 return color = to the background color

shade_surface:
 color = ...
 compute reflected ray
 return color = color + k * cast_ray(reflected ray)

Reflections

Distribution Ray Tracing

Anti-aliasing
[Shirley and M

arschner]

Soft Shadows
[Shirley and M

arschner]

Soft Focus
[Shirley and M

arschner]

[Shirley and M
arschner]

Fuzzy Reflections
[Shirley and M

arschner]

Motion
Blur

[Shirley and M
arschner]

Acceleration Structures

Acceleration Structures
[Shirley and M

arschner]

Bounding boxes
[Shirley and M

arschner]

Uniform Spatial Partitioning
[Shirley and M

arschner]

Bounding Volume Hierarchy
[Shirley and M

arschner]

Graphics Pipeline

23

Z-buffer Rendering

•Z-buffering is very common approach, also
often accelerated with hardware

•OpenGL is based on this approach

3D Polygons Image Pixels
GRAPHICS PIPELINE

Pipelining operations

* +b
a

c

An arithmetic pipeline that computes c+(a*b)

By pipelining the arithmetic operation, the throughput, or rate at which data flows through
the system, has been doubled
If the pipeline had more boxes, the latency, or time it takes one datum to pass through the
system, would be higher
throughput and latency must be balanced

3D graphics pipeline

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processor

Vertices Pixels

Geometry: objects - made of primitives - made of vertices
Vertex processing: coordinate transformations and color
Clipping and primitive assembly: output is a set of primitives
Rasterization: output is a set of fragments for each primitive
Fragment processing: update pixels in the frame buffer

the pipeline is best when we are doing the same operations on many data sets
 -- good for computer graphics!! where we process larges sets of vertices and pixels in the
same manner
1. Geometry: objects - made of primitives - made of vertices
2. Vertex processing: coordinate transformations and color
3. Clipping and primitive assembly: use clipping volume. must be primitive by primitive
rather than vertex by vertex. therefore vertices must be assembled into primitives before
clipping can take place. Output is a set of primitives.
4. Rasterization: primitives are still in terms of vertices -- must be converted to pixels. E.g.,
for a triangle specificied by 3 vertices, the rasterizer must figure out which pixels in the frame
buffer fill the triangle. Output is a set of fragments for each primitive. A fragment is like a
potential pixel. Fragments can carry depth information used to figure out if they lie behind
other fragments for a given pixel.
5. Fragment processing: update pixels in the frame buffer. some fragments may not be
visible. texture mapping and bump mapping. blending.

3D graphics pipeline

• optimized for drawing 3D triangles with shared vertices

• map 3D vertex locations to 2D screen locations

• shade triangles and draw them in back to front order
using a z-buffer

• speed depends on # of triangles

• most operations on vertices can be represented using a
4D coordinate space - 3D position + homogeneous
coordinate for perspective viewing

• 4x4 matrices and 4-vectors

- use varying level of detail - fewer triangles for distant objects
1. construct shapes from primitives - points, lines, polygons, images, bitmaps, (mathematical
descriptions of objects) - specify the model

Primitives and Attributes

Choice of primitives

• Which primitives should an API contain?

• small set - supported by hardware, or

• lots of primitives - convenient for user

Choice of primitives

• Which primitives should an API contain?

➡small set - supported by hardware

• lots of primitives - convenient for user

Performance is in 10s millions polygons/sec --
portability, hardware support key

Choice of primitives

• Which primitives should an API contain?

➡small set - supported by hardware

• lots of primitives - convenient for user

GPUs are optimized for
points, lines, and triangles

Choice of primitives

• Which primitives should an API contain?

➡small set - supported by hardware

• lots of primitives - convenient for user

GPUs are optimized for
points, lines, and triangles

Other geometric shapes will be built out of these

Two classes of primitives

 Angel and Shreiner

Geometric : points, lines, polygons
Image : arrays of pixels

Point and line segment types

 Angel and Shreiner

Polygons
• Multi-sided planar element composed of edges and

vertices.
• Vertices (singular vertex) are represented by points
• Edges connect vertices as line segments

E1

E3 E2

(x1,y1)

(x2,y2)

(x3,y3)

Valid polygons

• Simple

• Convex

• Flat

Valid polygons

• Simple

• Convex

• Flat

OpenGL polygons

• Only triangles are supported (in latest versions)

GL_POINTS GL_TRIANGLES

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN

Other polygons

triangulation

triangulation
as long as triangles are not collinear, they will be simple, flat, and convex -- easy to render

Sample attributes

• Color glClearColor(1.0, 1.0, 1.0, 1.0);

• Point size glPointSize(2.0);

• Line width glLineWidth(3.0);

