# CS230 : Computer Graphics Lecture 3: Lighting and Shading 

Tamar Shinar
Computer Science \& Engineering
UC Riverside

## Why we need shading

- Suppose we build a model of a sphere using many polygons and color each the same color. We get something like
-But we want



## Shading

-Why does the image of a real sphere look like
-Light-material interactions cause each point to have a different color or shade

- Need to consider
- Light sources
- Material properties
- Location of viewer
- Surface orientation (normal)


## General rendering

- The most general approach is based on physics - using principles such as conservation of energy
- a surface either emits light (e.g., light bulb) or reflects light for other illumination sources, or both
- light interaction with materials is recursive
- the rendering equation is an integral equation describing the limit of this recursive process


## Fast local shading models

- the rendering equation can't be solved analytically
- numerical methods aren't fast enough for real-time
- we'll use a local model where shade at a point is independent of other surfaces
- use Phong reflection model
- shading based on local light-material interactions


## Local shading model


direct light is the color of the light source reflected light is the color of the light reflected from the object surface for rendering, color of light source and reflected light determines the colors of pixels in the frame buffer only need to consider the rays that leave the source and reach the viewer's eye

## Global Effects



## Light-material interactions

at a surface, light is absorbed, reflected, or transmitted
specular

diffuse


## translucent



## General light source

## Illumination function:

$$
l(x, y, z, \theta, \phi, \lambda)
$$



## Idealized light sources

- Ambient light
- Point light
- Spotlight
- distant (directional) light



## Ambient light source

- achieve a uniform light level

$$
\mathbf{L}_{a}=\left[\begin{array}{l}
L_{a r} \\
L_{a g} \\
L_{a b}
\end{array}\right]
$$

- no black shadows
- ambient light intensity at each point in the

$$
L_{a}
$$ scene

## Point light source

$$
\mathbf{L}\left(\mathbf{p}_{0}\right)=\left[\begin{array}{c}
L_{r}\left(\mathbf{p}_{0}\right) \\
L_{g}\left(\mathbf{p}_{0}\right) \\
L_{b}\left(\mathbf{p}_{0}\right)
\end{array}\right] \quad L\left(\mathbf{p}_{0}\right)
$$

illumination intensity at $\mathbf{p}$ :

$$
l\left(\mathbf{p}, \mathbf{p}_{0}\right)=\frac{1}{\left|\mathbf{p}-\mathbf{p}_{0}\right|^{2}} \mathbf{L}\left(\mathbf{p}_{0}\right)
$$

[Angel and Shreiner]

- use scalar I(\vec\{p\}_0) to denote any of three components
- points sources alone aren't too realistic looking -- tend to be high contrast
- most real-world scenes have large light sources
- add ambient light to mitigate high contrast


## Point light source

Most real-world scenes have large light sources

Point light sources alone aren't too realistic - add ambient light to mitigate high contrast


- umbra is fully in shadow, penumbra is partially in shadow


## Point light source

Most real-world scenes have large light sources


Point light sources alone aren't too realistic - drop off intensity more slowly

$$
l\left(\mathbf{p}, \mathbf{p}_{0}\right)=\frac{1}{d^{2}} \mathbf{L}\left(\mathbf{p}_{0}\right)
$$

## Spotlights




## Spotlights


[Angel and Shreiner]
add an exponent for greater control final result is like point light but modified by this cone

## Distant light source



## characterized by direction


[Angel and Shreiner] if the light source is very far, the direction vectors don't change
characterized by direction rather than position

## Lambertian Reflection Model



The Lambertian reflection model is good for diffuse surfaces (those with a rough surface). The bottom part of the vase could be rendered with the Lambertian reflection model, since it is matte in appearance. The top part of the vase is reflective and has specular highlights.

## Lambertian Reflection Model

 angle between I and n . The light source with length d has a certain amount of light energy associated with it. If the light is tilted relative to the surface, the same amount of light energy shines on more surface area. Therefore, the intensity of the light is less per unit surface area.

## Lambertian Reflection Model



## Lambertian Reflection Model


the color intensity is also going to be proportional to the reflectance of the object in that color channel

## Lambertian Reflection Model



## Lambertian Reflection Model



$$
I=L R \max (0, \mathbf{n} \cdot \mathbf{l})
$$ from the light. If we don't modify the formula we'll get a negative intensity. We can put in the max to ensure that if the face points away, it won't be lit by the light.

## Lambertian Reflection Model



two-sided lighting

An alternative is to take the absolute value. This is equivalent to having another light on the other side of the object exactly opposite the first.

## Ambient Reflection

$$
I=L R \max (0, \mathbf{n} \cdot \mathbf{l})
$$

Surfaces facing away from the light will be totally black


Problem: surfaces facing away from the light will be totally black.

## Ambient Reflection

$$
I=L_{a} R_{a}+L_{d} R_{d} \max (0, \mathbf{n} \cdot \mathbf{l})
$$

All surfaces get same
amount of ambient light


## Phong Reflection Model



The Phong reflection model combines the Ambient and Lambertian reflections with a specular reflection to capture highlights such as the white highlight seen on the shiny part of the vase
The highlight is a reflection of the light and it is the color of the light.

## Phong Reflection Model



- efficient, reasonably realistic
-3 components
- 4 vectors

- I to light source
- n surface normal
- v to viewer
- $\mathbf{r}$ perfect reflector (function of $\mathbf{n}$ and $\mathbf{I}$ )


## Phong Reflection Model



This formula will be applied for each of the three color channels independently.

## Ambient reflection



## different ambient

 coefficients for different colors$$
I_{a}=R_{a} L_{a}, \quad 0 \leq R_{a} \leq 1
$$

ambient
reflection coefficient

## Diffuse reflection


e.g., paper, unfinished wood, unpolished stone

The diffuse component of the Phong reflectance model is the same as the Lambertian reflectance model

## Diffuse reflection



Lambert's cosine law

direct: maximum light intensity


- the light is reduced by cos of angle
- this is because same amount of light is spread over larger area when light comes in at an angle


## Specular reflection



## Ideal reflector


$\mathbf{r}$ is the mirror reflection direction
The new thing in the Phong reflection model is the specular component

## Specular reflection



## Specular surface



## specular reflection is strongest in mirror reflection direction

## Specular reflection


specular reflection drops off with increasing angle $\phi$

## Specular reflection



$$
I_{s}=R_{s} L_{s} \max (0, \cos \phi)_{\uparrow}^{\alpha}
$$

$$
\begin{array}{ll}
\alpha=5 . .10 & \text { plastic } \\
\alpha=100 . .200 & \text { metal }
\end{array}
$$

Phong proposed this model clamp to 0 -- avoid negative values the fuzzy highlight was too big without an exponent

## Phong Reflection Model



## Alternative: Blinn-Phong Model



Blinn-Phong


Phong


Blinn-Phong
(Lower Exponent)

$I=I_{a}+I_{d}+I_{s}$
$=R_{a} L_{a}+R_{d} L_{d} \max (0, \mathbf{l} \cdot \mathbf{n})+R_{s} L_{s} \max (0, \mathbf{h} \cdot \mathbf{n})^{\alpha}$
Ambient Diffuse Specular

## replace v.r with h.n

this way we don't have to recompute $\mathbf{r}$, which depends on $\mathbf{n}$ $\mathbf{h}$ does not depend on $\mathbf{n}$ saves a lot especially for directional lights and constant viewing direction


