CS230 : Computer Graphics Lecture 2

Tamar Shinar
Computer Science \& Engineering
UC Riverside

Raster Devices and Images

Raster Devices

- raster displays show images as a rectangular array of pixels
- most printers are also raster devices
- image is made by depositing ink at points on a grid
- digital cameras - have image sensors made of grid of light-sensitive pixels (2D array)
- scanner - linear array of pixels swept across page to create grid of pixels (1D array)

Raster Display

(a)

(c)

(b)

(d)

Hearn, Baker, Carithers
virtually all graphics system are raster based, meaning the image we see is a raster of pixels
or a rectangular array of pixels
Here a raster scan device display an image as a set of discrete points across each scanline

Transmissive vs. Emissive Display

LCD

LED

Displays are either transmissive or emissive

one pixel of an LCD display:
(LEFT)In the off state the front polarizer blocks all the light that passes the back polarizer in the on state the liquid crystal rotates the polarization of the light so it can pass through the front polarizer the degree of rotation can be adjusted by an applied voltage (RIGHT) LED display

Raster Display

$60 \times$ Magnification

White Yellow

$60 \times$ Magnification

red, green, blue subpixels

get different colors by mixing red, green, and blue this is from an LCD monitor printers are also raster-based. image is made out of points on a grid

What is an image?

Continuous image

$$
\begin{aligned}
& I: R \rightarrow V \\
& R \subset \mathbb{R}^{2} \\
& V=\mathbb{R}^{+} \quad \text { (grayscale) } \\
& V=\left(\mathbb{R}^{+}\right)^{3} \quad \text { (color) }
\end{aligned}
$$

An (continuous) image is a function defined over some 2D area, that maps points to intensity level

What is an image?

Sampled image

$$
I: R \rightarrow V
$$

$$
R \subset \mathbb{Z}^{2}
$$

$$
V=[0,1] \quad \text { (grayscale) }
$$

$$
V=[0,1]^{3} \quad \text { (color) }
$$

$n_{x}=$ number of columns
$n_{y}=$ number of rows

$$
\left[-0.5, n_{x}-0.5\right] \times\left[-0.5, n_{y}-0.5\right]
$$

each pixel value represents the average color of the image over that pixel's area.

Raster Image

A raster image is 2D array storing pixel values at each pixel (picture element) 3 numbers for color alternative: vector image -- essentially a set of instructions for rendering an image

Bit depth - defined by device standards

(Humans can perceive $\sim 10,000,000$ colors)

in practice, it is sufficient for pixels to have a bounded range e.g., $[0,1]$ They are represented in integers

Monitor Gamma

displayed intensity $=(\max$ intensity $) a^{\gamma}$

Gamma Correction

displayed intensity $=(\max$ intensity $)(\underbrace{a^{\frac{1}{\gamma}}}_{\uparrow})^{\gamma}$

find gamma using, e.g., checkboard then gamma-correct the input

Color representation

additive

subtractive
additive color - Primary colors are red, green, blue. form a color by adding these. CRTs, projectors, LCD displays, positive film subtractive color - form a color by filtering white light with cyan, magenta, and yellow filters printing, negative film

Alpha Channel

$$
\mathbf{c}=\alpha \mathbf{c}_{f}+(1-\alpha) \mathbf{c}_{b}
$$

Compositing: two different interpretations: pixel coverage (fraction of pixel covered) and blending

Ray Tracing

Wikimedia Commons

up to 16 reflections per ray
Greg L.,Wikimedia Commons

Wikimedia Commons
shallow depth of field, area light sources, diffuse interreflection

Basic Algorithm

for each pixel
l. cast view ray:
compute view ray
from camera through
pixel into scene
2. intersect: find intersection of ray

with closest object
3. shade: compute the
color of the intersection point

Ray Tracing Program

```
for each pixel do
    compute viewing ray
    if ( ray hits an object with t in [0, inf] ) then
            compute n
            evaluate shading model and set pixel to that color
    else
        set pixel color to the background color
```


Object-oriented design

```
class Surface
    public:
        bool Intersection(RAY& ray)=0;
        Box Bounding_Box()=0;
```

Other objects: Ray, Light, Material, Camera, Film, World

Simple Ray Tracer

