
CS230 : Computer Graphics
Fall 2014

Tamar Shinar
Computer Science & Engineering

UC Riverside

Pixar

Welcome to CS230!

Talton et al., 2011

Schröder, 2000

Hong et al. 2007

ILM

Henrik Wann Jensen

LLNL

Today’s agenda

• Course Logistics

• Introduction: graphics areas and applications

• Course schedule

• Introduction to OpenGL

• Math review

Course Logistics

• Instructor: Tamar Shinar

• Website: http://www.cs.ucr.edu/~shinar/courses/cs230

• Lectures: TuTh, 12:40-2pm

• Office hours: Tu, 11am-12pm, WCH 419

http://www.cs.ucr.edu/~shinar/courses/cs230
http://www.cs.ucr.edu/~shinar/courses/cs230

Course Logistics
• Grading

• 15% quizzes and exercises

• 50% assignments (2 assignments, each ~2-3 weeks)

• 35% final project

• No exams

• Total of 2 late days (48 hours) for the quarter for the
assignments only

• final project must be submitted on time

• assignments individual; project individual or group of 2

- quizzes and exercises
 - some in class problems - only graded for correctness if we’ve already covered it
 - otherwise only graded for presence and effort
 - may ask someone to work a problem
- quiz will normally be in the first 5-10 minutes of class -- today we’ll have a short one at the
end that you will get full credit on -- check your own math skills and give me a sense of
class’s math skill
- Q. how many people have taken graphics before? MS students? PhD students? Want to go
on to work in graphics?
- final project:
 - there will be a proposal due

Textbook

Fundamentals of Computer Graphics

Shirley and Marschner

Additional
books

if you like using a book
- red book older version online:http://fly.cc.fer.hr/~unreal/theredbook/
And if you prefer -- all material is online in one form or another -- you don’t have to buy a
book but it can be useful for a coherent presentation

About me

• B.S., University of Illinois in Urbana-Champaign,
Mathematics, Computer Science, Fine Art

• Ph.D., 2008, Stanford University on simulation methods
for computer graphics

• Started at UCR in the Fall 2011

• Work in graphics simulation and biological simulation

http://www.cs.ucr.edu/~shinar

Course overview

• Learn fundamental 3D graphics concepts

• Implement graphics algorithms

• make the concepts concrete

• expand your abilities and confidence for future work

Course schedule

see course website for up-to-date schedule

Introduction

Graphics applications

• 2D drawing

• Drafting, CAD

• Geometric modeling

• Special effects

• Animation

• Virtual Reality

• Games

• Educational tools

• Surgical simulation

• Scientific and
information
visualization

• Fine art

Graphics areas

• Modeling - mathematical representations of
physical objects and phenomena

• Rendering - creating a shaded image from 3D
models

• Animation - creating motion through a
sequence of images

• Simulation - physics-based models for modeling
dynamic environments

Which area would you like your final project to be in?

Think about which area interests you, dovetails with your present or future research, or that
you want to learn more about
Modeling and rendering are separate stage
 - first design and position objects -- modeling
 - then add lights, materials properties, effects -- rendering

Modeling

Talton et al., 2011

Schröder, 2000

Igarashi et al., 2007

CFD Technologies

Bronstein et al., 2011

- subdivision surface - Siggraph course notes 2000
- Teddy : sketch based interface for 3D modeling
- Talton et al. -- procedural modeling - for games, virtual worlds, design, etc.
 - combine machine learning and graphics
- Bronstein - reasoning about geometric models for search

Rendering

Hong et al. 2007

Henrik Wann Jensen
d’Eon and Irving, 2011

- opengl - 3D graphics (z-buffer) rendering
- teapot - image-based lighting - illuminated by a high dynamic range environment -
metal, glass, diffuse, and glossy
- subsurface scattering - to capture translucent materials such as skin and marble
- rendering a emissive material such as fire - participating medium - scattering, absorption
- local vs global illumination

- direct vs. global illumination

- direct vs. global illumination

Animation

Adventures of Tintin, Weta 2011

Sleeping Beauty, Disney, 1959

Animation

Adventures of Tintin, Weta 2011

Sleeping Beauty, Disney, 1959

Simulation

ILM

ILM Pixar

Weta

Firestorm
Harry Potter and the Half Blood Prince
Industrial Light + Magic

Firestorm
Harry Potter and the Half Blood Prince
Industrial Light + Magic

fluid simulation in Pixar’s Ratatouille

fluid simulation in Pixar’s Ratatouille

Casey Reas

Golan Levin

Lytro

Other areas...

• Interactivity (HCI)

• Image processing

• Visualization

• Computational photography LLNL

Microsoft Kinect

L-1 Identity Solns

- Lytro demo: http://www.lytro.com/living-pictures/2325

Introduction to
OpenGL

Introduction to OpenGL

• Open Graphics Library, managed by Khronos Group

• API for drawing 2D and 3D graphics

• communicates with GPU

• accelerate graphics rendering

• Standard API with support for multiple languages and
platforms, open source

• functions and named integer constants

• many language bindings

• e.g., JavaScript binding WebGL (browser-based)

- used to produce interactive 3D graphics
- sits between programmer and 3D accelerators in hardware
- standard requires support for feature set for all implementations
- Both OpenGL and Direct3D support feature sets -- they take advantage of hardware
acceleration or use software emulation when a feature is unavailable in hardware
- Direct3D is proprietary
- OpenGl and Direct3D both implemented in the display driver

24

OpenGL - Software to Hardware

• Silicon Graphics (SGI) revolutionized the
graphics workstation by putting graphics
pipeline in hardware (1982)

• To use the system, application
programmers used a library called GL

• With GL, it was relatively simple to
program three dimensional interactive
applications

25

OpenGL

• The success of GL lead to OpenGL
(1992), a platform-independent API that
was
- Easy to use
- Close to the hardware - excellent performance
- Focus on rendering
- Omitted windowing and input to avoid window

system dependencies

26

OpenGL: Conceptual Model

Real Object
Human Eye

Real Light

27

OpenGL: Conceptual Model

Real Object
Human Eye

Real Light

Real Object
Human Eye

Display
Device

Graphics System

Synthetic
Model

Synthetic
Camera

Synthetic
Light Source

What can OpenGL do?
Examples from the

 OpenGL Programming Guide (“red book”)

OpenGL Programming Guide

- Wireframe models
 - shows each object made up of polygons
- the lines are are the edges and the faces of the polygons make up the object surface

OpenGL Programming GuideOpenGL Programming Guide

Plate 3. The same scene with antialiased lines that smooth the jagged edges. See Chapter 7 .

when you approximate smooth edges using pixels, this leads to jagged lines
especially with near vertical and near horizontal lines

OpenGL Programming Guide

• `

OpenGL Programming Guide

Plate 4. The scene drawn with flat-shaded polygons (a single color for each filled polygon). See
Chapter 5 .

“unlit scene”

OpenGL Programming GuideOpenGL Programming Guide

Plate 5. The scene rendered with lighting and smooth-shaded polygons. See Chapter 5 and Chapter 6 .

OpenGL Programming GuideOpenGL Programming Guide

Plate 6. The scene with texture maps and shadows added. See Chapter 9 and Chapter 13 .

OpenGL Programming GuideOpenGL Programming Guide

Plate 7. The scene drawn with one of the objects motion-blurred. The accumulation buffer is used to
compose the sequence of images needed to blur the moving object. See Chapter 10 .

OpenGL Programming GuideOpenGL Programming Guide

Plate 8. A close-up shot - the scene is rendered from a new viewpoint. See Chapter 3 .

OpenGL Context

• contains all the information that will be used by
OpenGL in executing a rendering command

• OpenGL functions operate on the “current” context

• local to an application

• application may have several OpenGL contexts

OpenGL State

• context contains “state” information

• put OpenGL into various states

• e.g., current color, current viewing transformation

• these remain in effect until changed

• glEnable(), glDisable(), glGet(), glIsEnabled()

• glPushAttrib(), glPopAttrib() to temporarily modify
some state

OpenGL Rendering Pipeline

• sequence of steps taken when user issues a rendering
command

• objects (appear to be) rendered in the exact order user
provides

OpenGL Shaders

• Some stages of the rendering pipeline are programmable

• programs are called “Shaders”

• Written in the OpenGL Shading Language

OpenGL command syntax

• commands: glClearColor();

• glVertex3f()

• constants: GL_COLOR_BUFFER_BIT

• types: GLfloat, GLdouble, GLshort, GLint,

Simple OpenGL program
#include <whateverYouNeed.h>

main() {

 InitializeAWindowPlease();

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0, 1.0, 1.0);
 glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
 glBegin(GL_POLYGON);
 glVertex3f(0.25, 0.25, 0.0);
 glVertex3f(0.75, 0.25, 0.0);
 glVertex3f(0.75, 0.75, 0.0);
 glVertex3f(0.25, 0.75, 0.0);
 glEnd();
 glFlush();

 UpdateTheWindowAndCheckForEvents();
}

OpenGL Programming Guide, 7th Ed.

- blue are placeholders for windowing system commands
- clear color, actual clear
- Ortho - the coordinate system
- flush executes the commands

42

OpenGL Libraries

•OpenGL core library (gl.h)
-OpenGL32 on Windows
-GL on most unix/linux systems

•OpenGL Utility Library -GLU (glu.h)
-avoids having to rewrite code

•OpenGL Utility Toolkit -GLUT (glut.h)
-Provides functionality such as:

• Open a window
• Get input from mouse and keyboard
• Menus

- GL
 - no windowing commands
 - no commands for higher-level geometry - you build these using primitives (points, lines,
polygons)
- GLU - standard in every implementation
- OpenGL Utility library provides modeling support
 - quadratic surfaces, NURBS curves and surfaces

43

Software Organization

GLUT

GLU

GLX windows

software and/or hardware

application program

OpenGL Motif
widget or similar

Simple OpenGL program
#include <whateverYouNeed.h>

main() {

 InitializeAWindowPlease();

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0, 1.0, 1.0);
 glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
 glBegin(GL_POLYGON);
 glVertex3f(0.25, 0.25, 0.0);
 glVertex3f(0.75, 0.25, 0.0);
 glVertex3f(0.75, 0.75, 0.0);
 glVertex3f(0.25, 0.75, 0.0);
 glEnd();
 glFlush();

 UpdateTheWindowAndCheckForEvents();
}

OpenGL Programming Guide, 7th Ed.

- blue are placeholders for windowing system commands
-can replace blue code with calls to glut

Simple OpenGL program
#include<GL/glut.h>

void init() {
 glClearColor(0.0, 0.0, 0.0, 0.0);
}

void display() {
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0, 1.0, 1.0);
 glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
 glBegin(GL_POLYGON);
 glVertex3f(0.25, 0.25, 0.0);
 glVertex3f(0.75, 0.25, 0.0);
 glVertex3f(0.75, 0.75, 0.0);
 glVertex3f(0.25, 0.75, 0.0);
 glEnd();
 glFlush();
}
main() {
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (FB_WIDTH, FB_HEIGHT);
 glutCreateWindow ("Test OpenGL Program");
 init();
 glutDisplayFunc(display);
 glutMainLoop();
}

- blue are placeholders for windowing system commands
-can replace blue code with calls to glut

Math Review
<whiteboard>

