CS 210 Midterm

Spring 2017

Name	
Student ID	
Signature	

You may not ask any questions during the exam. If you believe that there is something wrong with a question, write down what you think the question is trying to ask, and answer that.

Question	Points	Score
1	3	
2	3	
3	3	
4	3	
5	3	
6	3	
7	3	
8	3	
9	3	
10	3	
11	4	
12	4	
13	4	
14	4	
15	4	
16	4	
17	4	
18	4	
19	18	
20	20	
Total	100	

True/False

For each question, indicate whether the statement is true or false by circling T or F, respectively.

- 1. (T/F) Division of two positive floating point numbers may cause overflow.
- 2. (T/F) The condition number (in 2-norm) of $A^T A$ is the same as the condition number (in 2-norm) of A.
- 3. (T/F) A good algorithm will produce an accurate solution regardless of the conditioning of the problem being solved.
- 4. (T/F) If A is nonsingular, then $A\mathbf{x} = \mathbf{b}$ may have more than one solution.
- 5. (T/F) Gaussian elimination can be used to compute a triangular factorization of a matrix.
- 6. (T/F) Any symmetric real matrix has a Cholesky factorization.
- 7. (T/F) The singular value decomposition of a matrix A will give orthonormal bases for range(A), $\operatorname{null}(A)$, $\operatorname{range}(A^T)$, and $\operatorname{null}(A^T)$.
- 8. (T/F) **x** is a solution to the least squares problem $\min_{\mathbf{x}} ||b A\mathbf{x}||_2$ if and only if $A^T A\mathbf{x} = A^T b$.
- 9. (T/F) The QR decomposition can be stably computed through the classical Gram-Schmidt algorithm.
- 10. (T/F) A Householder matrix is an reflection matrix.

Multiple Choice

Instructions: For the multiple choice problems, circle exactly one of (a) - (e).

- 11. Which one statement about floating point numbers is true?
 - (a) If two numbers are exactly representable in floating point, then the result of an arithmetic operation on them is also an exactly representable floating point number.
 - (b) Floating point addition is commutative, but not associative.
 - (c) Floating point numbers are distributed uniformly througout their range.
 - (d) In a unnormalized floating point system, the representation of a number is unique.
 - (e) None of the above.
- 12. Which one of the following statements is <u>false</u>?
 - (a) A symmetric matrix, A, satisfies $||A||_1 = ||A||_{\infty}$.
 - (b) A permutation matrix, P, satisfies $||P||_2 = 1$.
 - (c) An orthogonal matrix, Q, satisfies $||Q||_2 = 1$.
 - (d) If A is singular matrix, then $||A||_2 = 0$.
 - (e) For any vector \mathbf{x} , $||\mathbf{x}||_1 \ge ||\mathbf{x}||_{\infty}$.

- 13. Let A be an $n \times n$ matrix. Which of the following properties would necessarily imply that A is singular?
 - I. The columns of A are linearly dependent.
 - II. A has a singular value that is 0.
 - III. $A\mathbf{z} = \mathbf{0}$, for some $\mathbf{z} \neq \mathbf{0}$.
 - (a) II only
 - (b) I and II only
 - (c) I and III only
 - (d) II and III only
 - (e) I, II and III
- 14. Which of the following statements are true?
 - I. A problem is ill-conditioned if its solution is highly sensitive to changes in its data.
 - II. We can improve conditioning of a problem by switching from single to double precision arithmetic.
 - III. In order to solve a problem numerically, it is necessary to have both a well-conditioned problem and a stable algorithm.
 - (a) I only
 - (b) II only
 - (c) I and III only
 - (d) II and III only
 - (e) I, II and III
- 15. Which of the following statements are true?
 - I. The number of solutions of $A\mathbf{x} = \mathbf{b}$ never depends on \mathbf{b} .
 - II. If A is singular, then $A\mathbf{x} = \mathbf{b}$ has either no solution or infinitely many solutions.
 - III. If $A\mathbf{x} = \mathbf{b}$ then \mathbf{b} must be in the columnspace of A.
 - (a) II only
 - (b) I and II only
 - (c) I and III only
 - (d) II and III only
 - (e) I, II and III

- 16. Which of the following statements about the Singular Value Decomposition (SVD) are true?
 - I. Every real matrix has an SVD.
 - II. If a matrix Q is orthogonal, then its singular values are all 1.
 - III. A matrix with rank r will have exactly r singular values that are greater than 0.
 - (a) I only
 - (b) I and II only
 - (c) I and III only
 - (d) II and III only
 - (e) I, II and III
- 17. Let $A = U\Sigma V^T$ be the Singular Value Decomposition (SVD) of the matrix A and let A^+ denote the pseudoinverse of A. Which of the following statements are true?
 - I. The SVD reveals the rank of a matrix.
 - II. $A^+ = U\Sigma^+ V^T$ where Σ^+ is the pseudoinverse of Σ .
 - III. The rank of A is the same as the rank of A^+ .
 - (a) I only
 - (b) III only
 - (c) I and II only
 - (d) I and III only
 - (e) I, II and III

18. Which of the following statements about the Least Squares (LS) problem $\min_{\mathbf{x}} ||\mathbf{b} - A\mathbf{x}||_2$ are true?

- I. The solution of the LS problems satisfies $A^T A \mathbf{x} = A^T \mathbf{b}$.
- II. The solution of the LS problem is always unique.
- III. If $\mathbf{b} \in \text{Range}(A)$, then the LS problem has a residual of norm 0.
- (a) I only
- (b) III only
- (c) I and II only
- (d) I and III only
- (e) I, II and III

Written Response

19. LU Factorization. Consider the 3×3 matrix

$$A = \begin{pmatrix} 2 & 4 & 3\\ 6 & 14 & 10\\ 4 & 10 & 10 \end{pmatrix}.$$

- (a) Find unit lower triangular matrices M_1 and M_2 such that $M_2M_1A = U$ where U is an upper triangular matrix.
- (b) Express A as A = LU where L is a unit lower triangular matrix, and U is the upper triangular matrix you found above.
- (c) Explain how you would use the factors L and U to solve the linear equations $A\mathbf{x} = \mathbf{b}$.

20. Least Squares. Let $A \in \mathbb{R}^{m \times n}$, where m > n. Consider the least squares (LS) problem

$$\min_{\mathbf{x}} ||\mathbf{b} - A\mathbf{x}||_2.$$

- (a) Assume A has full rank. Show how you would use the QR decomposition $A = Q \begin{pmatrix} R \\ 0 \end{pmatrix}$ to solve the LS problem.
- (b) Now assume A is rank-deficient with rank r < n. Show how you would use the Singular Value Decomposition $A = U\Sigma V^T$, with $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0)$, to solve the LS problem.
- (c) In parts (a) and (b) is the solution unique? Why or why not?