Homework 5

CS 210

Question	Points	Score
1	16	
2	16	
3	20	
4	18	
5	20	
Total	90	

- 1. (Heath 6.3) For each of the following functions, what do the first- and second- order optimality conditions say about whether 0 is a minimizer on \mathbb{R} ?
 - (a) $f(x) = x^2$
 - (b) $f(x) = x^3$
 - (c) $f(x) = x^4$
 - (d) $f(x) = -x^4$
- 2. (Heath 6.4) Determine the critical points of each of the following functions and characterize each as a minimum, maximum, or inflection point. Also determine whether each function has a global minimum or maximum on \mathbb{R} .
 - (a) $f(x) = x^3 + 6x^2 15x + 2$
 - (b) $f(x) = 2x^3 25x^2 12x + 15$
 - (c) $f(x) = 3x^3 + 7x^2 15x 3$
 - (d) $f(x) = x^2 e^x$
- 3. (Heath 6.5) Determine the critical points of each of the following functions and characterize each as a minimum, maximum, or saddle point. Also determine whether each function has a global minimum or maximum on \mathbb{R}^2 .
 - (a) $f(x,y) = x^2 4xy + y^2$
 - (b) $f(x,y) = x^4 4xy + y^4$
 - (c) $f(x,y) = 2x^3 3x^2 6xy(x-y-1)$
 - (d) $f(x,y) = (x-y)^4 + x^2 y^2 2x + 2y + 1$
- 4. (Heath 6.8) Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(\mathbf{x}) = \frac{1}{2}(x_1^2 - x_2)^2 + \frac{1}{2}(1 - x_1)^2.$$

- (a) At what point does f attain a minimum?
- (b) Perform one iteration of Newton's method for minimizing f using as starting point $\mathbf{x}_0 = (2,2)^T$.
- (c) Explain whether this is a good or bad step and in what sense.

5. (Heath 6.9) Let $f: \mathbb{R}^n \to \mathbb{R}$ be given by

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} - \mathbf{x}^T \mathbf{b} + c$$

where A is an $n \times n$ symmetric positive definite matrix, **b** is an n-vector, and c is a scalar.

- (a) Show that Newton's method for minimizing this function converges in one iteration from any starting point \mathbf{x}_0 .
- (b) If the steepest descent method is used on this problem, what happens if the starting value \mathbf{x}_0 is such that $\mathbf{x}_0 \mathbf{x}^*$ is an eigenvector of A, where \mathbf{x}^* is the solution?