Homework 3 CS 210

Question	Points	Score
1	10	
2	15	
3	10	
4	5	
5	10	
6	5	
7	5	
8	5	
9	5	
10	10	
Total	80	

Singular Value Decomposition

1. (T&B 4.1) Determine SVDs of the following matrices (by hand calculation):

(a)
$$\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$$
, (b) $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, (c) $\begin{pmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$, (d) $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, (e) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

2. Let A be an $m \times n$ singular matrix of rank r with SVD

where $\sigma_1 \geq \ldots \geq \sigma_r > 0$, \hat{U} consists of the first r columns of U, \tilde{U} consists of the remaining m - r columns of U, \hat{V} consists of the first r columns of V, and \tilde{V} consists of the remaining n - r columns of V. Give bases for the spaces range(A), null(A), range(A^T) and null(A^T) in terms of the components of the SVD of A, and a brief justification.

3. Use the SVD of A to show that for an $m \times n$ matrix of full column rank n, the matrix $A(A^T A)^{-1} A^T$ is an orthogonal projector onto range(A).

Least Squares

- 4. Consider the least squares problem $\min_{\mathbf{x}} ||\mathbf{b} A\mathbf{x}||_2$. Which of the following statements are necessarily true?
 - (a) If \mathbf{x} is a solution to the least squares problem, then $A\mathbf{x} = \mathbf{b}$.
 - (b) If **x** is a solution to the least squares problem, then the residual vector $\mathbf{r} = \mathbf{b} A\mathbf{x}$ is in the nullspace of A^T .
 - (c) The solution is unique.
 - (d) A solution may not exist.
 - (e) None of the above.
- 5. (Heath 3.3) Set up the linear least squares system $A\mathbf{x} \approx \mathbf{b}$ for fitting the model function $f(t, \mathbf{x}) = x_1t + x_2e^t$ to the three data points (1, 2), (2, 3), (3, 5). Is the least squares solution unique? Why or why not?
- 6. (Heath 3.5) Let **x** be the solution to the linear least squares problem $A\mathbf{x} \approx \mathbf{b}$, where

$$A = \begin{pmatrix} 1 & 0\\ 1 & 1\\ 1 & 2\\ 1 & 3 \end{pmatrix}.$$

Let $\mathbf{r} = \mathbf{b} - A\mathbf{x}$ be the corresponding residual vector. Which of the following three vectors is a possible value for \mathbf{r} ? Why?

(a)
$$\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
 (b) $\begin{pmatrix} -1\\-1\\1\\1\\1 \end{pmatrix}$ (c) $\begin{pmatrix} -1\\1\\1\\-1 \end{pmatrix}$

Orthogonal and Householder Matrices

7. (Heath 3.23) Which of the following matrices are orthogonal?

(a)
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

(b) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
(c) $\begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix}$
(d) $\begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ -\sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix}$

- 8. (Heath 3.24) Which of the following properties does an orthogonal $n \times n$ matrix necessarily have? (Circle all that apply.)
 - (a) It is nonsingular.
 - (b) It preserves the Euclidean vector norm when multiplied times a vector.
 - (c) Its transpose is its inverse.
 - (d) Its columns are orthonormal.
 - (e) It is symmetric.
 - (f) It is diagonal.
 - (g) Its Euclidean matrix norm is 1.
 - (h) Its Euclidean condition number is 1.
- 9. A Householder matrix H
 - (a) has condition number 1.
 - (b) has the property $||H||_2 = 1$.
 - (c) is uniquely defined by the condition $H\mathbf{x} = (\alpha, 0, \dots, 0)^T$ where $|\alpha| = ||\mathbf{x}||_2$.
 - (d) Both (a) and (b).
 - (e) All of the above.
- 10. Show that a $n \times n$ Householder matrix $H = I 2\mathbf{v}\mathbf{v}^T/\mathbf{v}^T\mathbf{v}$ has an eigenvalue of 1 with multiplicity n-1 and an eigenvalue of -1 with multiplicity 1.