Homework 2 CS 210

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total	100	

Matrix algebra

- 1. (Trefethen&Bau 2.6) If \mathbf{u} and \mathbf{v} are *m*-vectors, the matrix $A = I + \mathbf{u}\mathbf{v}^T$ is known as a rank-one pertubation of the identity. Show that if A is nonsingular, then its inverse has the form $A^{-1} = I + \alpha \mathbf{u}\mathbf{v}^T$ for some scalar α , and give an expression for α . For what \mathbf{u} and \mathbf{v} is A singular? If it is singular, what is null(A)?
- 2. (Heath 2.8) Let A and B be any two $n \times n$ matrices.
 - (a) Prove that $(AB)^T = B^T A^T$.
 - (b) If A and B are both non-singular, prove that $(AB)^{-1} = B^{-1}A^{-1}$.

Vector and matrix norms

3. Let $\mathbf{x} \in \mathbb{R}^n$. Two vector norms, $||\mathbf{x}||_a$ and $||\mathbf{x}||_b$, are *equivalent* if $\exists c, d \in \mathbb{R}$ such that

$$c||\mathbf{x}||_b \le ||\mathbf{x}||_a \le d||\mathbf{x}||_b.$$

Matrix norm equivalence is defined analogously to vector norm equivalence, i.e., $|| \cdot ||_a$ and $|| \cdot ||_b$ are equivalent if $\exists c, d$ s.t. $c||A||_b \leq ||A||_a \leq d||A||_b$.

- (a) Let $\mathbf{x} \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$. For each of the following, verify the inequality and give an example of a non-zero vector or matrix for which the bound is achieved (showing that the bound is tight):
 - i. $||\mathbf{x}||_{\infty} \leq ||\mathbf{x}||_{2}$ ii. $||\mathbf{x}||_{2} \leq \sqrt{n} ||\mathbf{x}||_{\infty}$
 - iii. $||A||_{\infty} \leq \sqrt{n} ||A||_2$
 - iv. $||A||_2 \le \sqrt{n} ||A||_\infty$

This shows that $||\cdot||_{\infty}$ and $||\cdot||_2$ are equivalent, and that their induced matrix norms are equivalent.

(b) Prove that the equivalence of two vector norms implies the equivalence of their induced matrix norms.

Sensitivity and conditioning

- 4. (Heath 2.58) Suppose that the $n \times n$ matrix A is perfectly well-conditioned, i.e., cond(A) = 1. Which of the following matrices would then necessarily share this same property?
 - (a) cA, where c is any nonzero scalar
 - (b) DA, where D is a nonsingular diagonal matrix
 - (c) PA, where P is any permutation matrix
 - (d) BA, where B is any nonsingular matrix
 - (e) A^{-1} , the inverse of A
 - (f) A^T , the transpose of A

Linear Systems

5. (Heath 2.4a) Show that the following matrix is singular.

$$A = \left(\begin{array}{rrrr} 1 & 1 & 0\\ 1 & 2 & 1\\ 1 & 3 & 2 \end{array}\right)$$

- 6. For each of the following statements, indicate whether the statement is true or false.
 - \mathbf{T}/\mathbf{F} If a matrix A is singular, then the number of solutions to the linear system $A\mathbf{x} = \mathbf{b}$ depends on the particular choice of right-hand-side \mathbf{b} .
 - \mathbf{T}/\mathbf{F} If a matrix A is nonsingular, then the number of solutions to the linear system $A\mathbf{x} = \mathbf{b}$ depends on the particular choice of right-hand-side \mathbf{b} .
 - T/F If a matrix has a very small determinant, then the matrix is nearly singular.
 - T/F If any matrix has a zero on its main diagonal, then it is necessarily singular.
- 7. Can a system of linear equations $A\mathbf{x} = \mathbf{b}$ have exactly two solutions? Explain your answer.

LU Factorization and Gaussian Eliminiation

- 8. For each of the following statements, indicate whether the statement is true or false.
 - T/F If a triangular matrix has a zero on its main diagonal, then it is necessarily singular.
 - T/F The product of two upper triangular matrices is upper triangular.
 - T/F If a linear system is well-conditioned, then pivoting is unnecessary in Gaussian elimination.
 - \mathbf{T}/\mathbf{F} Once the LU factorization of a matrix has been computed to solve a linear system, then subsequent linear systems with the same matrix but different right-hand-side vectors can be solved without refactoring the matrix.
- 9. Consider LU factorization with partial pivoting of the matrix A which computes

$$M_{n-1}P_{n-1}\cdots M_3P_3M_2P_2M_1P_1A = U$$

where P_i is a row permutation matrix interchanging rows *i* and *j* > *i*.

- (a) Show that the matrix $P_3P_2M_1P_2^{-1}P_3^{-1}$ has the same structure as the matrix M_1 .
- (b) Explain how the above expression is transformed into the form PA = LU, where P is a row permutation matrix.

Cholesky Factorization

10. (Heath 2.37) Suppose that the symmetric $(n + 1) \times (n + 1)$ matrix

$$B = \begin{pmatrix} \alpha & \mathbf{a}^T \\ \mathbf{a} & A \end{pmatrix}$$

is positive definite.

- (a) Show that the scalar α must be positive and the $n \times n$ matrix A must be positive definite.
- (b) What is the Cholesky factorization of B in terms of α , **a**, and the Cholesky factorization of A?