Rounding

- floating point system is discrete!
- not all real numbers representable
- those that are called "machine numbers"
- others must be *rounded*
x <-- fl(x)
- leads to "rounding error" or "roundoff error"

- How to round?		
1. Chop - truncate digits - "round to zero"		
2. Round to nearest		
- in case of tie go to even		
Example: Rounding		
Number	Chop	Round to nearest
1.649	1.6	1.6
1.650	1.6	1.6 (tie - round to even)
1.651	1.6	1.7
1.699	1.6	1.7
1.749	1.7	1.7
1.750	1.7	1.8 (tie - round to even)
1.751	1.7	1.8
1.799	1.7	1.8

EXAMPLE : !!!!! warning: don't compare fp numbers with == !!!!!
$\gg 4 / 3-1==1 / 3$
ans $=0$
\gg single $((4 / 3-1))==$ single(1/3)
ans = 1
$\gg(4 / 3-1)-1 / 3$
ans $=-5.5511 \mathrm{e}-17$
right way to compare:
$\gg \operatorname{abs}((4 / 3-1)-1 / 3)<=1 e-16$
ans = 1

Machine Precision

eps_mach

- characterizes accuracy
"machine epsilon", "machine precision", "unit roundoff"
- depends on rounding rule

$$
\overline{0}: \overline{1} \overline{2} \overline{3} \cdots(\mathrm{p}-1) \begin{aligned}
& \mathrm{x} \times \times \times \ldots \\
& \mathrm{p} \times \ldots
\end{aligned}
$$

chop: (chop everything at and after $b^{\wedge}-p$ position)

$$
b^{\wedge}-(p-1)=b^{\wedge}(1-p)
$$

- round: (lose up to half of chop)
$1 / 2 b^{\wedge}(1-p)$
- eps_mach tells us the max possible relative error in representation

$$
\begin{aligned}
& \quad|\mathrm{fl}(\mathrm{x})-\mathrm{x}| \\
& \mathrm{|x|} \mid \\
& \text { - check: } \\
& <=\text { eps_mach * } \mathrm{b}^{\wedge} \mathrm{e} /|\mathrm{x}| \\
& =\text { eps_mach * } \mathrm{b}^{\wedge} \mathrm{e} /\left(\mathrm{m} * \mathrm{~b}^{\wedge} \mathrm{e}\right) \\
& =\text { eps_mach }) \mathrm{m} \\
& <=\text { eps mach }
\end{aligned}
$$

- alternative characterization
$\mathrm{fl}(1+$ eps_mach $)>1$

Examples:

- (Ex. 1) eps_mach (chop, nearest) $=.25, .125$
- IEEE SP eps_mach (nearest) $=2^{\wedge}-24 \sim=10^{\wedge}-7$ (about 7 decimal digits of precision)
- IEEE DP eps_mach (nearest) $=2^{\wedge}-53 \sim=10^{\wedge}-16$ (about 16 decimal digits of precision)

Floating Point Math

```
- if the sum (or diff) contains more than p digits, then the ones smaller than p will be lost
- smallest number may be lost completely
-multiplication ok
- mult mantissas and sum exponents
- still need to round though, because product will generally have more digits (up to 2p)
Example
-------
    1.23 * 10^5
+ 1.00 * 10^4 (10^3, 10^2)
- can also get overflow or underflow
- underflow often ok - 0 is good approximation
- overflow more serious problem - can't approximate the number in question
- IEEE standard gives us
x flop y = fl(x op y)
as long as overflow doesn't occur
- + and * commutative but *not* associative
- Ex: for eps < eps_mach, and 2 eps > eps_mach
    (1+eps ) +eps = 1
        1+(eps + eps ) = 1 + 2 eps > 1
```


Rounding Error Analysis

Basic idea is:
fl $(x$ op $y)=(x$ op $y)(1+$ delta $)$,
|delta| <= eps_mach, and op $=+,-, *$,
rearranging, get bound on relative *forward error*:
$\frac{\mid f l(x \text { op } y)-(x \text { op } y) \mid}{\mid(x \text { op } y) \mid}=\mid$ delta $\mid<=$ eps_mach
or, can interpret in terms of *backward error* (with op = +):
$f 1(x+y)=(x+y)(1+$ delta $)=x(1+$ delta $)+y(1+$ delta $)$
Example: Compute $x(y+z)$

$f 1(y+z)=(y+z)(1+d 1),|d 1|<=e p s _$mach
and
$1(x(y+z))=(x(y+z)(1+d 1))(1+d 2),|d 2|<=$ eps_mach
$=x(y+z)(1+d 1+d 2+d 1 d 2$
$=x(y+z)(1+d),|d|=|d 1+d 2|<=2$ eps_mach

- pessimistic bound
typical, multiples of eps_mach accumulate
- but in practice this is generally ok

Cancellation

problems can arise when subtracting two very close numbers

- result is exactly representable, but
- e.g., if the numbers differ by rounding error, this can basically leave rounding error only after subtracting

```
Examples
x = 1.92403 * 10^2
x
    0.00128* 10^2 = .128 = 1.28* 10^-1
- only 3 significant digits in the result
```

BAD: computing *small quantity* as a difference of *large quantities*
$e^{\wedge} x=1+x+x^{\wedge} 2 / 2+x^{\wedge} 3 / 3!+\ldots$, for $x<0$
Example: Quadratic formula

$a x^{\wedge} 2+b x+c=0$
$b=\frac{-b+-\operatorname{sqrt}\left(b^{\wedge} 2-4 a c\right)}{2 a}$
$0.05010 x^{\wedge} 2-98.78 x+5.015$
roots $\sim=1971.605916$, answer to 10 digits
0.05077069387
$b^{\wedge} 2-4 a c=9757-1.005=9756$ answer to 4 digits
roots: $(98.78+-98.77) / 0.1002=1972,0.09980$
subtraction of two *close* numbers (cancellation error), followed by division by *small* number (amplification)

