
Floating Point

- Generally use floating point, which is a *finite precision* system
  - introduced *rounding* errors

- standard is IEEE 754 (1985)
  - adherence made numerical code more portable and reliable

- as opposed to fixed point : point is always after the 10^0 place
  1234.567
     1.3
     0.001
- floating point : point can "float"
  1.234567 * 10^3
  1.3 * 10^0
  1.0 * 10^-3

- General floating point system
      b    base 
      p    number of digits of precision
  [U,L]    exponent range

            b     p            L     U   field width
IEEE  SP    2    23(+1)=24  -126   127   (1+8+23  = 32)
IEEE  DP    2    52(+1)=53 -1022  1023   (1+11+52 = 64)

- Floating point number x

             (   d0 +  d1  +  d2  +   ...  + d(p-1)   )
    x  =  +- (         --     --             ------   ) * b^E
             (         b      b^2            b^(p-1)  )

       0 <=  di  <=  b-1,   i = 0,  ... , p-1  (p digits)

       L <=  E   <=  U

    mantissa:      d0d1...d(p-1)
    exponent:         E 

Example 1 (1):
--------------
       b =  2
       p =  3
       L = -1
       U =  1

  start enumerating possibilities:
      +-  m     E
      +- 0.00  -1  -> 0
      +- 0.00   0  -> 0
      +- 0.00  +1  -> 0
      +- 0.01  -1  -> 0.001
      +- 0.01   0  -> 0.01
      +- 0.01  +1  -> 0.1
      +- 0.10  -1  -> 0.01
      +- 0.10   0  -> 0.1
      +- 0.10  +1  -> 1.0

                     duplicates!
   In general, number of possibilities
      2 * b^p * (U - L + 1)
   but
    - lots of duplicates 
    - non-unique representation

Normalization
- require the leading digit to be non-zero
- so mantissa, m 
  1 <= m < b
- nice because:
  - representation is now *unique*
  - don't waste digits on any leading 0's
  - for binary base, leading digit must be 1
    - so don't need to store it, just assume number is 1.d1d2..dp
      - gain an extra bit of precision!

Properties
- finite and discrete system
- finite: how many (normalized) numbers can be represented?
count them:
2 * (b - 1) * b^(p-1) * (U - L + 1) + 1

- what's the smallest (positive) normalized number? or "underflow level (UFL)"

1.0 ... 0 * b^L = b^L

- what's the biggest normalized number? or "overflow level (OFL)"

(b-1).(b-1) ... (b-1) * b^U 
    = ( b - b^(-(p-1)) ) * b^U
    = ( 1 - b^(-p) ) * b^(U+1)

Example 1 (2):
--------------
       b =  2
       p =  3
       L = -1
       U =  1



- number of normalized 
2 * (b - 1) * b^(p-1) * (U - L + 1) + 1
    = 2 * (2 - 1) * 2^(3-1) * (1 - -1 + 1) + 1
    = 2 * 1 * 4 * 3 + 1
    = 25
- UFL
b^L
    = 2^-1
    = .5
- OFL
( 1 - b^(-p) ) * b^(U+1)
    = ( 1 - 2^(-3) ) * 2^2
    = 3.5
PICTURE of representable numbers
- note evenly spaced only for a given exponent
    |    |    |    |  |  |  |  |||||   |   |||||  |  |  |  |    |    |    |    
-4      -3        -2          -1       0       1           2         3         4

Subnormals
- normalized numbers: gap between 0 and b^L
- fill in by allowing denormalized or subnormal numbers
- can make use of capacity for non-normalized numbers by allowing leading 0's
- though precision won't be full precision, since have leading 0's

Example 1(3):
-------------
    |    |    |    |  |  |  |  |||||||||||||||||  |  |  |  |    |    |    |    
-4      -3        -2          -1       0       1           2         3         4

- allows 6 new numbers around 0
- new smallest number is (0.01)_2 ^ 2^-1 = (0.125)_10

- called "gradual underflow" because we gradually lose precision 

- implementation: reserved value of exponent field
  - leading bit not stored

Exceptional values
- Inf
  - dividing finite number by 0
  - exceeding OFL
- NaN
  - undefined operation 0/0, Inf/Inf, 0*Inf
- implemented through reserved values of exponent field


