
Conditioning and Stability

- Analogous concepts:
 - Conditioning of a *problem* = sensitivity to data errors
 - Stability of an *algorithm* = sensitivity to errors in computation

- Conditioning of a problem
 - problem solution is a map from input x to solution f(x)
 - PICTURE: error/uncertainty in data (x^), and error in solution (f(x^))
 - "backward error" x - x^
 - "forward error" f(x) - f(x^)

- "well-conditioned" = insensitive
 "ill-conditioned" = sensitive

- How to make this notion *quantitative*?
 - ratio of relative forward error to relative backward error

 rel. forward err. | f(x^) - f(x) | / | f(x) |
 K = ----------------- = ---------------------------
 rel. backward err. | x^ - x | / | x |

 - rearranging, see that K acts like "amplification factor"

 rel. forward err. = K * rel. backward err.

 - ill-conditioned ---> large K
 - well-conditioned ---> small K or K close to 1

- Usually what we can derive is an upper bound for K, so that we get bound on rel. forward err.

 rel. forward err. <= K * rel. backward err.

f is differentiable, x^ = x + dx

 f(x + dx) - f(x) ~= dx f'(x)

 - then K is

 | dx f'(x) | / | f(x) | | f'(x) x |
 K_f = ----------------------- = -----------
 | dx | / | x | | f(x) |

 - so K_f depends on properties of f and value of x

- There's a relationship between cond# of problem and cond# of inverse problem
 - Inverse problem of y = f(x) is find x s.t. f(x) = y, written x = f^-1(y) = g(y)
 - so

 rel. forward err. | g(y^) - g(y) | / | g(y) |
 ------------------ = ----------------------------
 rel. backward err. | y^ - y | / | y |
 | x^ - x | / | x | 1
 = --------------------------- = ---
 | f(x^) - f(x) | / | f(x) | K

 - Differentiable f(x), and g(y)
 - g(f(x)) = x by def'n
 - using chain rule, g'(f(x)) f'(x) = 1, so g' = 1/f'
 - so cond#
 | g'(y) y | | 1/f'(x) f(x) | 1
 K_g = ----------- = ------------------ = ---
 | g(y) | | x | K_f

 - Lesson:
 - If K_f near 1, both f and g well-conditioned
 - If K_f big or small, either K_f or K_g ill-conditioned

- Side note: Above is "relative cond#". If seeing x* s.t. f(x*) = 0, use "absolute cond#", defined analogously:
 abs. forward err. | f(x^) - f(x) |
 K = ----------------- = ----------------
 abs. backward err. | x^ - x |

 - for differentiable f
 | dx f'(x) |
 K_f_abs = ------------ = |f'(x)|
 | dx |

- Example: f(x) = sqrt(x) = x^{1/2}
 f'(x) = 1/2 * x^{-1/2} = 1/(2f(x))

 | f'(x) x | | x | 1
 K_f = ----------- = ----------------- = ---
 | f(x) | | 2 f(x) * f(x) | 2

 - inverse problem: find x s.t. y = sqrt(x), or x = g(y) = y^2

 K_g = 2

 - Conclusion: both f and g are well-conditioned

- Example: f(x) = tan(x)
 f'(x) = sec^2(x) = 1 + tan^2(x)

 | x(1+tan^2(x)) |
 K_f = ----------------- = very large near x = pi/2
 | tan(x) |

 - at x = 1.57079, K_f = 2.48275 * 10^5 (sensitive!!), so that

 tan(1.57079) ~= 1.58058 * 10^5, tan(1.57078) ~= 6.12490 * 10^4

((1.58058 * 10^5 - 6.12490 * 10^4) / (6.12490 * 10^4)) / ((1.57079 - 1.57078)/1.57078) = K_f

 - g(y) = arctan(y), at y = 1.58058 * 10^5

 K_g ~= 4.0278 * 10^{-6} (insensitive!!)

Stability and Accuracy

- An algorithm is *stable* if its results are insensitive to perturbations during computation
 - e.g., truncation, discretization, and rounding errors

- Or, using backward error, algorithm is stable if
 - effect of perturbations during computation is no worse than effect of small amount of data error
 - *however* if problem is ill-conditioned, effect of small data error is really bad!
 - won't get a good (accurate) solution even with a stable algorithm

- So
 - well-conditioned problem + unstable algorithm => inaccurate solution
 - ill-conditioned problem + stable algorithm => inaccurate solution
 - well-conditioned problem + stable algorithm => accurate solution

