
(Lectures 12-19)

Lecture 12

• overdetermined system

• least squares

• normal equations

– uniqueness of solution to normal equations

– geometric interpretation

• Least squares solution by pseudo-inverse

– minimum norm solution

Lecture 13

• least squares solution by QR (for A with linearly independent columns)

– case 1: A has linearly indepedent columns

– case 2: A has linearly dependent columns

• least squares and Tikhonov regularization

– formulation

– makes the problem full rank

– makes the problem better conditioned

• weighted least squares formulation

• condition number of f

• condition number of a matrix

– definition

– properties

– well-conditioned vs. ill-conditioned

– condition number in 2-norm

– condition number in 2-norm of symmetric matrix

– and geometric interpretation

• normal equations square the condition number
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Lectures 14-15

• conditioning and stability

• backward error

• condition number

• stability and accuracy

• Floating Point

– finite precision

– general floating point system: base, precision, exponent range

– example system

– normalization

Lecture 16

• Floating Point Numbers

– underflow level

– overflow level

– picture of representable floating point numbers

– subnormals

– exceptional values: Inf and Nan

• Floating Point Math

– Rounding: chop, nearest, even

– Machine epsilon

– addition/subtraction

– multiplication/division

– Rounding Error analysis

– Floating Point Issues

∗ Finite Precision

∗ Overflow

∗ Cancellation error

– Examples of floating point issues
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Lecture 17

• iterative methods

• matrix splitting

– Jacobi

– Gauss-Seidel

• convergence rate

• eigenvalue problems

– power method

– normalized power iteration

– powert method and shifting

– inverse iteration

– Rayleigh quotient iteration

– QR algorithm for eigenvalues and eigenvectors

Lecture 18

• QR algorithm

– basic algorithm

– generates similar matrix at each iteration

– converges to Schur form (revealing eigenvalues)

• optimizations

– first reduce matrix to upper Hessenberg/Tridiagonal via Householder,
cuts cost of QR decomposition

– shifted QR algorithm to accelerate convergence

• Krylov subspaces

– good for large, sparse A

• Arnoldi iteration

– generates projections of A onto Krylov subspaces

– generates upper Hessenberg matrix

– then do QR on upper Hessenberg matrix to find approximate eigen-
values of A

• Arnoldi reduces to Lanczos for symmetric matrices

• upper Hessenberg reduces to tridiagonal for symmetric matrices
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• residual

– relation to error

– and stopping criteria for iterative methods

• solvers based on Krylov subspaces

• Ax = b by GMRES

– minimizes 2-norm of residual over each Krylov subspace

Lecture 19

• line search method

• step size for exact line search on quadratic function

• steepest descent method

• spd A, Ax = b by Conjugate Gradients (CG)

– recast as minimization of quadratic function

– minimizes A-norm of error over each Krylov subspace

– A-orthogonal search directions

– compared with steepest descent directions

– termination in n steps (theoretical)

– Gram-Schmidt A-orthogonalization
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