(Lectures 12-19)

Lecture 12

- overdetermined system
- least squares
- normal equations
 - uniqueness of solution to normal equations
 - geometric interpretation
- Least squares solution by pseudo-inverse
 - minimum norm solution

- least squares solution by QR (for A with linearly independent columns)
 - case 1: A has linearly indepedent columns
 - case 2: A has linearly dependent columns
- least squares and Tikhonov regularization
 - formulation
 - makes the problem full rank
 - makes the problem better conditioned
- weighted least squares formulation
- condition number of f
- condition number of a matrix
 - definition
 - properties
 - well-conditioned vs. ill-conditioned
 - condition number in 2-norm
 - condition number in 2-norm of symmetric matrix
 - and geometric interpretation
- normal equations square the condition number

Lectures 14-15

- conditioning and stability
- backward error
- $\bullet\,$ condition number
- stability and accuracy
- Floating Point
 - finite precision
 - general floating point system: base, precision, exponent range
 - example system
 - normalization

- Floating Point Numbers
 - underflow level
 - overflow level
 - picture of representable floating point numbers
 - subnormals
 - exceptional values: Inf and Nan
- Floating Point Math
 - Rounding: chop, nearest, even
 - Machine epsilon
 - addition/subtraction
 - multiplication/division
 - Rounding Error analysis
 - Floating Point Issues
 - * Finite Precision
 - * Overflow
 - * Cancellation error
 - Examples of floating point issues

Lecture 17

- iterative methods
- matrix splitting
 - Jacobi
 - Gauss-Seidel
- convergence rate
- eigenvalue problems
 - power method
 - normalized power iteration
 - powert method and shifting
 - inverse iteration
 - Rayleigh quotient iteration
 - QR algorithm for eigenvalues and eigenvectors

- QR algorithm
 - basic algorithm
 - generates similar matrix at each iteration
 - converges to Schur form (revealing eigenvalues)
- optimizations
 - $-\,$ first reduce matrix to upper Hessenberg/Tridiagonal via Householder, cuts cost of QR decomposition
 - shifted QR algorithm to accelerate convergence
- Krylov subspaces
 - good for large, sparse A
- Arnoldi iteration
 - generates projections of A onto Krylov subspaces
 - generates upper Hessenberg matrix
 - then do QR on upper Hessenberg matrix to find approximate eigenvalues of A
- Arnoldi reduces to Lanczos for symmetric matrices
- upper Hessenberg reduces to tridiagonal for symmetric matrices

- $\bullet~{\rm residual}$
 - relation to error
 - and stopping criteria for iterative methods
- solvers based on Krylov subspaces
- Ax = b by GMRES
 - minimizes 2-norm of residual over each Krylov subspace

- line search method
- step size for exact line search on quadratic function
- steepest descent method
- spd A, Ax = b by Conjugate Gradients (CG)
 - recast as minimization of quadratic function
 - minimizes A-norm of error over each Krylov subspace
 - A-orthogonal search directions
 - compared with steepest descent directions
 - termination in n steps (theoretical)
 - Gram-Schmidt A-orthogonalization