(Lectures 12-19)

Lecture 12

- overdetermined system
- least squares
- normal equations
- uniqueness of solution to normal equations
- geometric interpretation
- Least squares solution by pseudo-inverse
- minimum norm solution

Lecture 13

- least squares solution by QR (for A with linearly independent columns)
- case 1: A has linearly indepedent columns
- case 2: A has linearly dependent columns
- least squares and Tikhonov regularization
- formulation
- makes the problem full rank
- makes the problem better conditioned
- weighted least squares formulation
- condition number of f
- condition number of a matrix
- definition
- properties
- well-conditioned vs. ill-conditioned
- condition number in 2-norm
- condition number in 2-norm of symmetric matrix
- and geometric interpretation
- normal equations square the condition number

Lectures 14-15

- conditioning and stability
- backward error
- condition number
- stability and accuracy
- Floating Point
- finite precision
- general floating point system: base, precision, exponent range
- example system
- normalization

Lecture 16

- Floating Point Numbers
- underflow level
- overflow level
- picture of representable floating point numbers
- subnormals
- exceptional values: Inf and Nan
- Floating Point Math
- Rounding: chop, nearest, even
- Machine epsilon
- addition/subtraction
- multiplication/division
- Rounding Error analysis
- Floating Point Issues
* Finite Precision
* Overflow
* Cancellation error
- Examples of floating point issues

Lecture 17

- iterative methods
- matrix splitting
- Jacobi
- Gauss-Seidel
- convergence rate
- eigenvalue problems
- power method
- normalized power iteration
- powert method and shifting
- inverse iteration
- Rayleigh quotient iteration
- QR algorithm for eigenvalues and eigenvectors

Lecture 18

- QR algorithm
- basic algorithm
- generates similar matrix at each iteration
- converges to Schur form (revealing eigenvalues)
- optimizations
- first reduce matrix to upper Hessenberg/Tridiagonal via Householder, cuts cost of QR decomposition
- shifted QR algorithm to accelerate convergence
- Krylov subspaces
- good for large, sparse A
- Arnoldi iteration
- generates projections of A onto Krylov subspaces
- generates upper Hessenberg matrix
- then do QR on upper Hessenberg matrix to find approximate eigenvalues of A
- Arnoldi reduces to Lanczos for symmetric matrices
- upper Hessenberg reduces to tridiagonal for symmetric matrices
- residual
- relation to error
- and stopping criteria for iterative methods
- solvers based on Krylov subspaces
- $\mathrm{Ax}=\mathrm{b}$ by GMRES
- minimizes 2-norm of residual over each Krylov subspace

Lecture 19

- line search method
- step size for exact line search on quadratic function
- steepest descent method
- $\operatorname{spd} \mathrm{A}, \mathrm{Ax}=\mathrm{b}$ by Conjugate Gradients (CG)
- recast as minimization of quadratic function
- minimizes A-norm of error over each Krylov subspace
- A-orthogonal search directions
- compared with steepest descent directions
- termination in n steps (theoretical)
- Gram-Schmidt A-orthogonalization

