QR Iteration

$$
A_{0}=A
$$

for $k=0,1,2, \ldots$

$$
\begin{aligned}
& A_{k}=Q_{k} R_{k} \\
& A_{k+1}=R_{k} Q_{k}
\end{aligned}
$$

end
QR decomposition of A_{k}

Note:

$$
A_{k+1}=R_{k} Q_{k}=Q_{k}^{\top} A_{k} Q_{k}
$$

So A_{k+1} is similar to A_{k} (same $\lambda^{\prime} s$)

- stable algorithm, since it is based on orthogonal similarity transforms.
- under certain conditions, A_{k} converges to schur form of A :

Simultaneous Lteration

$$
\begin{aligned}
& Q^{(0)}=I \\
& Z=A Q^{(k-1)} \\
& Z=Q^{(k)} R^{(k)} \\
& A^{(k)}=\left(Q^{(k)}\right)^{\top} A \underline{Q}^{(k)}
\end{aligned}
$$

Unshifted QR Algorithm

$$
\begin{aligned}
& A^{(0)}=A \\
& A^{(k-1)}=Q^{(k)} R^{(k)} \\
& A^{(k)}=R^{(k)} Q^{(k)} \\
& Q^{(k)}=Q^{(1)} Q^{(2) \cdots Q^{(k)}}
\end{aligned}
$$

$$
\mathbb{R}^{(k)}=R^{(k)} R^{(k-1)} \cdots R^{(M)}
$$

* $\underline{R}^{(k)}, Q^{(k)}$, and $A^{(k)}$ equivalent, and

$$
A^{k}=Q^{(k)^{(k)} \mathbb{R}^{(k)}}, A^{(k)}=Q^{(k))^{\prime}} A Q^{(k)}
$$

Proof: induction in k

$$
k=0
$$

SI: $A^{0}=Q^{(1)}=\mathbb{R}^{(1)}=I, A^{(1)}=A$
QR: $A^{0}=\underline{Q}^{(1)} \underline{\underline{(R)}}=I \quad A^{(0)}=A$

$$
k \geqslant 1
$$

SI: $\quad A^{(k)}=Q^{(k) T} A Q^{(k)}$

$$
\Rightarrow \quad A^{k}=A A^{k-1}=A \underline{Q}^{(k-1)} \underline{R}^{(k-1)}=\underline{Q}^{(k)} R^{(k)} R^{(k-1)}
$$

QR: $\checkmark A^{k}=A A^{k-1}=A Q^{(k-1)} \underline{R}^{(k-1)}=Q^{(k-1)} A^{(k-1)} \underline{R}^{(k-1)}=Q^{(k)} \underline{R}^{(k e}$

$$
A^{(k)}=Q^{(k) T} A^{(k-1)} Q^{(k)}=\underline{Q}^{(k)^{T}} A Q^{(k)}
$$

Eigenvalues or trıaıagonaı I Dy QR iteration

曹 $T=T_{0}$
多

$$
\begin{aligned}
& T_{0}=Q_{0} R_{0} \\
& T_{1}=R_{0} Q_{0} \\
& T_{1}=Q_{1} R_{1} \\
& T_{2}=R_{1} Q_{1}
\end{aligned}
$$

$$
T_{0}=T
$$

for $k=0,1,2, \ldots$

$$
T_{k}=Q_{k} R_{k}
$$

$$
T_{k+1}=R_{k} Q_{k}
$$

end

Note: - T_{k+1} similar to T_{k}

- T_{k} 's all tridiagunal
- T_{k} 's converging to diagonal matrix \wedge

Accelerated convergence: use shifts Choose shift S_{k}

$$
\begin{aligned}
& T_{k}-s_{k} I=Q_{k} R_{k} \\
& T_{k+1}=R_{k} Q_{k}+s_{k} I
\end{aligned}
$$

shifted QR achieves cubic convergence

Note: we still nave lie conman-
T_{k+1} is similar to T_{k}

$$
\begin{aligned}
T_{k}-s_{k} I & =Q_{k} R_{k} \\
\Rightarrow T_{k} & =Q_{k} R_{k}+s_{k} I \\
\Rightarrow R_{k} & =Q_{k}^{\top} T_{k}-Q_{k}^{\top} s_{k} \\
T_{k+1} & =R_{k} Q_{k}+s_{k} I \\
& =\left(Q_{k}^{\top} T_{k}-Q_{k}^{\top} s_{k}\right) Q_{k}+s_{k} I \\
& =Q_{k}^{\top} T_{k} Q_{k}-s_{k} Q_{k}^{\top} Q_{k}+s_{k} I \\
& =Q_{k}^{\top} T_{k} Q_{k}
\end{aligned}
$$

Mapper Hessenberg form via Householder

Since we are trying to preserve the eigenvalues, want similarity transform.

$$
\begin{aligned}
& H_{1} A=\left(\begin{array}{ccc}
x & x & x \\
0 & x & x \\
0 & x & x
\end{array}\right) \\
& \text { red entries } \\
& \text { changed by multi by } \\
& \text { HAH, doesn't work } \\
& H_{1} A=\left(\begin{array}{ccc}
x & x & x \\
x & x & x \\
0 & x & x
\end{array}\right), H_{1}=\binom{1}{H_{1}} \\
& (H, A) H_{1}^{\top}=\left(\begin{array}{ccc}
x & x & x \\
x & x & x \\
0 & x & x
\end{array}\right) \\
& H_{2}=\left(\begin{array}{ll}
I_{2} & \\
& \bar{H}_{2}
\end{array}\right), \cdots, H_{n-2}=\left(\begin{array}{ll}
I_{n-2} & \\
& \\
& H_{n-2}
\end{array}\right) \\
& \underbrace{H_{n-2} \cdots H_{2} H_{1}} A \underbrace{H_{1}^{\top} H_{2}^{\top} \cdots+l_{n-2}^{\top}}=H \\
& \text { Q A } Q^{\top}=H \\
& A=Q^{\top} H Q
\end{aligned}
$$

Krylov Subspaces and Arnoldi Iteration
Krylov vectors

$$
b, A b, A^{2} b, \cdots
$$

Krylor subspace

$$
K_{r}=\operatorname{span}\{\underbrace{b, A b, \ldots, A^{r-1} b}_{\text {first } r \text { Krylov vectors }}\}
$$

not generally orthogonal, so use Gram-Schmidt to orthogonalize.
This is the Arnoldi Iteration.
After iteration k, we have

$$
A Q_{k}=Q_{k+1} H_{k+1, k}
$$

Multiply both sides by $Q_{k}{ }^{\top}$, we get

$$
\begin{aligned}
Q_{k}^{\top} A Q_{k} & =Q_{k}^{\top} Q_{k+1} H_{k+1, k} \\
& =\left[I_{k \times k} \overrightarrow{0}_{k+1}\right] H_{k+1, k}= \\
& =H_{k} \quad\left(\begin{array}{ll}
\text { fort } k \text { rows of } \\
\left.H_{k+1, k}\right)
\end{array}\right. \\
H_{k}=Q_{k}^{\top} A Q_{k} &
\end{aligned}
$$

projection of A onto $k^{\text {th }}$ Krylov space.

Arnoldi Iteration

$$
\begin{aligned}
& q_{1}=b /\|b\| \\
& A q_{1} \leadsto q_{2}
\end{aligned}
$$

after iteration $k, q_{1}, q_{2}, \ldots, q_{k}$

$$
v=A q_{k}
$$

orthogonalize w.r.t. to q_{1}, \ldots, q_{k}

$$
v \leftarrow v-\underbrace{\left(q_{j}{ }^{\top} v\right)}_{=h_{j k}} q_{j} \quad j=1, \ldots, k
$$

normalize

$$
\begin{aligned}
& q_{k+1}=v / \frac{\|v-\|}{}=\frac{h_{k+1, k}}{} \\
& A q_{k}=h_{1 k} q_{1}+h_{2 k} q_{2}+\ldots+h_{k k} q_{k}+h_{k+1, k} q_{k+1} \\
& A q_{k}=\left[\begin{array}{cccc}
1 & 1 & & 1 \\
q_{1} & q_{2} & \cdots & q_{k+1} \\
1 & 1 & & 1
\end{array}\right]\left[\begin{array}{c}
h_{1 k} \\
h_{2 k} \\
\vdots \\
h_{k k} \\
h_{k+1, k}
\end{array}\right]
\end{aligned}
$$

$A A^{\prime}$

$$
\begin{aligned}
& A q_{1}=\left(\begin{array}{cc}
1 & 1 \\
q_{1} & q_{2} \\
1 & 1
\end{array}\right)\binom{n_{11}}{h_{21}} \\
& A q_{2}=\left(\begin{array}{ccc}
q_{1} & 1 & 1 \\
q_{2} & q_{3} \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
h_{12} \\
h_{22} \\
h_{32}
\end{array}\right)
\end{aligned}
$$

$A q_{k}$

$$
\begin{aligned}
& \left(\begin{array}{cccc}
A_{q_{1}}^{\prime} & A_{q_{2}}^{\prime} & \cdots & A_{q_{k}} \\
& & & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 1 & & 1 \\
q_{1} & q_{2} & & \\
1 & 1 & & q_{k+1} \\
1 & & & 1
\end{array}\right)\left(\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 k} \\
h_{21} & h_{22} & & h_{2 k} \\
& h_{32} & \ddots & h_{k 2}
\end{array}\right) \\
& A Q_{k}=Q_{k+1} H_{k+1, k} \\
& Q_{k}^{\top} A Q_{k}=Q_{k \times k}^{\top} Q_{k \times(k+1)} \underset{\substack{ \\
(k+1) \times k}}{H_{k+1, k}} \\
& =\left[\begin{array}{ll}
I & \overrightarrow{0}
\end{array}\right] H_{k+1}, k \\
& k \times(k+1) \quad(k+1) \times k \\
& Q_{k}^{\top} A Q_{k}=H_{k}
\end{aligned}
$$

$$
\begin{aligned}
& \text { A/xiyetilto } \\
& q_{1}=\frac{b}{\|b\|} \\
& v=A q_{1} \\
& h_{11}=q_{1}^{\top} v \\
& v \leftarrow v-h_{11} q_{1} \\
& h_{21}=\|v\| \\
& q_{2}=v / h_{21} \\
& \Rightarrow A q_{1}=h_{11} q_{1}+h_{21} q_{2} \\
& \Rightarrow A q_{k}=h_{1 k} q_{1}+\ldots+h_{k k} q_{k}+h_{k+1, k} q_{k+1} \\
& \text { In matrix form, we are computing this factorization: }
\end{aligned}
$$

$$
\begin{aligned}
A q_{k} & =h_{1 k} q_{1}+h_{2 k} q_{2}+\ldots+h_{k k} q_{k}+h_{k+1} q_{k+1} \\
h_{k+1, k} q_{k+1} & =A q_{k}-h_{1 k} q_{1}-h_{2 k} q_{2}-\ldots-h_{k k} q_{k}
\end{aligned}
$$

Eigenvalues from Arnold al
The Arnoldi iteration is computing

$$
H_{k}=Q_{k}^{\top} A Q_{k}
$$

If we continue until $k=$ size of A, we have

$$
H=Q^{\top} A Q
$$

a Hessenberg matrix similar to A.
It therefore has the same eigenvalues.
In practice, we don't continue that far, but stop for some k. The eigenvalues of H_{k} are usually good approximations to the extreme eigenvalues of A.

Symmetric Matrices

$$
A=S
$$

1. Then $H_{k}=Q_{k}^{\top} S Q_{k}$ is also symm.
2. H_{k} is tridiagonal
only 1 orthogonalization is needed in the Arnoldi iteration!

Lanczos iteration

$$
\begin{gathered}
q_{0}=0, q_{1}=b /\|b\| \\
\text { for } k=1,2,3, \cdots \\
v=S q_{k} \\
a_{k}=q_{k}^{\top} v \\
v=v-b_{k-1} q_{k-1}-a_{k} q_{k} \\
b_{k}=\|v\| \\
q_{k+1}=v / b_{k} \\
\left(\begin{array}{lll}
1 & & 1 \\
q_{1} & \cdots & q_{k} \\
1 & & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 \\
q_{1} & \cdots & q_{k+1} \\
1 & 1
\end{array}\right)\left(\begin{array}{ccc}
b_{1} \sqrt{b_{1}} \mid \\
b_{1}\left(\begin{array}{l}
a_{2} \\
\left(b_{2}\right.
\end{array}\right. & \\
\left(b_{2}\right) & \cdots & \cdots \\
& \ddots & b_{k-1}
\end{array}\right)
\end{gathered}
$$

$$
\begin{aligned}
& T_{k}=Q_{k}^{\top} S Q_{k} \\
& S Q_{k}=Q_{k+1} T_{k+1, k}
\end{aligned}
$$

Lanczos algorithm presented above is unstable numerically.

Lanczos compared with Householder tridiagonalization:

- Lanczos takes advantage of sparsity Houesholder has filling.
- Lanczos uses A as a black box
- each iteration of Lanczos produces q_{k} Houscholder produces factor the of Q
- Householder is stable

