CS 210 Final (Practice Problems)

Fall 2019

Name	
Student ID	
Signature	

You may not ask any questions during the exam. If you believe that there is something wrong with a question, write down what you think the question is trying to ask, and answer that.

Question	Points	Score
1	2	
2	2	
3	2	
4	2	
5	2	
6	2	
7	2	
8	4	
9	4	
10	4	
11	4	
12	4	
13	4	
14	4	
15	4	
16	12	
17	12	
18	15	
Total	85	

True/False

For each question, indicate whether the statement is true or false by circling T or F, respectively.

- 1. (T/F) The normal equations $A^T A \mathbf{x} = A^T \mathbf{b}$ for the least squares problem $\min_x \|b A \mathbf{x}\|_2$ may have no solution.
- 2. (T/F) The QR decomposition can be stably computed using Householder reflections.
- 3. (T/F) A Householder matrix is an orthogonal matrix with a determinant of -1.
- 4. (T/F) Newton's method is an example of a fixed point iteration algorithm.
- 5. (T/F) If $A = U\Sigma V^T$ is the singular value decomposition of A, then $A^TA = V(\Sigma^T\Sigma)V^T$ is an eigendecomposition of A^TA .
- 6. (T/F) The eigenvalues of a real matrix are real.
- 7. (T/F) The Steepest Descent Method for unconstrained minimization breaks the problem down into a sequence of 1D minimizations.

Multiple Choice

Instructions: For the multiple choice problems, circle exactly one of (a) - (e).

- 8. Which of the following statements about the Least Squares (LS) problem $\min_{\mathbf{x}} \|\mathbf{b} A\mathbf{x}\|_2$ are true?
 - I. A solution of the LS problem satisfies $A^{T}(\mathbf{b} A\mathbf{x}) = \mathbf{0}$.
 - II. If A is rank-deficient, the least squares problem has no solution.
 - III. $\|\mathbf{b} A\mathbf{x}\|_2 = \|M(\mathbf{b} A\mathbf{x})\|_2$, where M is an elimination matrix as used in LU factorization.
 - (a) I only
 - (b) II only
 - (c) III only
 - (d) I and II only
 - (e) II and III only
- 9. Which of the following statements about the Least Squares (LS) problem $\min_{\mathbf{x}} ||\mathbf{b} A\mathbf{x}||_2$ are true?
 - I. The solution of the LS problem always exists.
 - II. The solution of the LS problem is unique if A is full rank.
 - III. A solution to the LS problem is $\mathbf{x} = A^+\mathbf{b}$, where A^+ is the pseudoinverse of A.
 - (a) I only
 - (b) III only
 - (c) I and II only
 - (d) I and III only
 - (e) I, II and III

- 10. Which of the following statements are true?
 - I. An eigenvalue is said to be defective if its algebraic multiplicity is less than its geometric multiplicity.
 - II. The matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is defective.
 - III. Symmetric, real matrices are always nondefective.
 - (a) I only
 - (b) II only
 - (c) III only
 - (d) II and III only
 - (e) I, II and III
- 11. Let $A \in \mathbb{R}^{n \times n}$ be invertible. Which of the following matrices have the same eigenvectors as A?
 - I. $A \alpha I$, for some nonzero scalar α .
 - II. SAS^{-1} , for some invertible matrix S.
 - III. A^{-1} .
 - (a) I only
 - (b) II only
 - (c) III only
 - (d) I and II only
 - (e) I and III only
- 12. Consider solving $\mathbf{g}(\mathbf{x}) = \mathbf{0}$, where $\mathbf{g} : \mathbb{R}^n \to \mathbb{R}^n$. Let $J_g(\mathbf{x}) = \frac{\partial \mathbf{g}}{\partial \mathbf{x}}(\mathbf{x})$ be the Lacobian matrix of \mathbf{g} so that $\mathbf{g}(\mathbf{x} + \mathbf{s}) = \mathbf{g}(\mathbf{x}) + J_g(\mathbf{x})\mathbf{s} + O(\|\mathbf{s}\|^2)$ is the Taylor expansion of \mathbf{g} about \mathbf{x} . Which of the following statements are true?
 - I. If **g** is a quadratic function, then $J_q(\mathbf{x})$ is a constant matrix.
 - II. Applying Newton's method, $\mathbf{s}_k = -J_g^{-1}(\mathbf{x}_k)\mathbf{g}(\mathbf{x}_k)$ is the Newton step such that $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}_k$.

III.
$$J_g(\mathbf{x}) = \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_2}{\partial x_1} & \dots & \frac{\partial g_n}{\partial x_1} \\ \vdots & \vdots & \dots & \vdots \\ \frac{\partial g_1}{\partial x_n} & \frac{\partial g_2}{\partial x_n} & \dots & \frac{\partial g_n}{\partial x_n} \end{pmatrix}$$

- (a) I only
- (b) II only
- (c) III only
- (d) I and III only
- (e) II and III only

- 13. Consider an unconstrained minimization problem where we are seeking a minimizer \mathbf{x}^* of a function $f(\mathbf{x})$. Which of the following statements are true?
 - I. The gradient of f, $\nabla f(\mathbf{x})$, points in a "downhill" direction of f.
 - II. A critical point \mathbf{x}^* of f is a minimizer of f if the Hessian matrix $H_f(\mathbf{x}^*)$ is negative definite.
 - III. A necessary condition for f to have a minimum at \mathbf{x}^* is that $\nabla f(\mathbf{x}^*) = \mathbf{0}$.
 - (a) I only
 - (b) II only
 - (c) III only
 - (d) I and III only
 - (e) II and III only
- 14. Consider an unconstrained minimization problem where we are seeking a minimizer \mathbf{x}^* of a function $f(\mathbf{x})$. Which of the following statements about line search methods are true?
 - I. Exact line search methods look for a local minimum of the function along the search direction, while inexact line search methods attempt to make sufficient progress in reducing the function.
 - II. Considering a step size α_k along a search direction \mathbf{s}_k , the Armijo condition is satisfied whenever $f(x_k + \alpha_k s_k) < f(x_k)$.
 - III. A descent direction at \mathbf{x}^k is a direction such that $\nabla f(\mathbf{x}_k)^T \mathbf{s}_k < 0$.
 - (a) I only
 - (b) II only
 - (c) III only
 - (d) I and III only
 - (e) II and III only
- 15. Let $A \in \mathbb{R}^{n \times n}$ be invertible. Consider solving $A\mathbf{x} = \mathbf{b}$ through the fixed point iteration $M\mathbf{x}^{k+1} = N\mathbf{x}^k + \mathbf{b}$, where A = M N. Which statements are true?
 - I. The iteration is convergent if $\rho(M^{-1}N) < 1$, where $\rho(A)$ is the spectral radius of A.
 - II. Gauss-Seidel iterations involve solution of a diagonal system, while Jacobi iterations involve solution of a triangular system.
 - III. The iteration $D\mathbf{x}^{k+1} = -(U+L)\mathbf{x}^k + b$, where D contains the diagonal elements of A and U+L contain the off-diagonal elements, can be updated in parallel for each component of \mathbf{x}^{k+1} .
 - (a) I only
 - (b) II only
 - (c) III only
 - (d) I and II only
 - (e) I and III only

Written Response

16. Nonlinear Equations: Newton's Method. Consider the nonlinear equation

$$f(x) = 0,$$

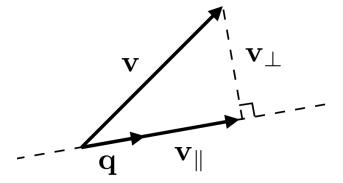
for $f: \mathbb{R} \to \mathbb{R}$.

- (a) Write down Newton's method for solving this equation.
- (b) Let $f(x) = x^2 4$. Starting with $x_0 = 3$, carry out one step of Newton's method.
- (c) What will be the convergence rate of Newton's method in this case?
- (d) Let $f(x) = x^2$. What will be the convergence rate of Newton's method?

17. Optimization. Consider the function

$$f(x,y) = 4x^2 + 2y^2 + 2xy - 2x - 4y + 1.$$

- (a) Find $\nabla f(x,y)$.
- (b) Find the stationary points of f.
- (c) Find the Hessian $H_f(x,y)$ of f.
- (d) Classify the stationary points of f as minima, maxima, or saddle points.



- 18. Orthgonalization. Let $\mathbf{q}, \mathbf{v} \in \mathbb{R}^n$ and let \mathbf{q} be a unit vector, i.e. $\|\mathbf{q}\|_2 = 1$, as illustrated in the figure above.
 - (a) Give an expression for \mathbf{v}_{\parallel} , the projection of \mathbf{v} onto the direction \mathbf{q} .
 - (b) Give an expression for $\mathbf{v}_{\perp},$ the component of \mathbf{v} orthogonal to $\mathbf{q}.$
 - (c) Write down the projector matrix onto range of q. What is the rank of this matrix?
 - (d) Write down the complementary projector to the projector in part (c). What is the rank of this matrix?
 - (e) Find the eigenvalues and eigenvectors of the matrix in part (c).