CS 210 Midterm

Fall 2019

Name	
Student ID	
Signature	

You may not ask any questions during the exam. If you believe that there is something wrong with a question, write down what you think the question is trying to ask, and answer that.

Question	Points	Score
1.	2	
2.	2	
3.	2	
4.	2	
5.	2	
6.	2	
7.	4	
8.	4	
9.	4	
10.	4	
11.	4	
12.	16	
13.	12	
Total	60	

True/False

For each question, indicate whether the statement is true or false by circling T or F, respectively.

- 1. (T/F) Examples of unstable algorithms include Gaussian Elimination without pivoting and classical Gram-Schmidt orthogonalization.
- 2. (T/F) If A is singular, then $A\mathbf{x} = \mathbf{b}$ will have infinitely many solutions.
- 3. (T/F) Solving $A\mathbf{x} = \mathbf{b}$, where $A \in \mathbb{R}^{n \times n}$ a diagonal matrix, requires $\sim n^2$ operations.
- 4. (T/F) Cholesky factorization of a symmetric, positive definite matrix requires pivoting to be stable.
- 5. (T/F) An invertible square matrix A does not have any 0 singular values, but can have both positive and negative singular values.
- 6. (T/F) A Householder matrix is an orthogonal matrix with a determinant of -1.

Multiple Choice

Instructions: For the multiple choice problems, circle exactly one of (a) - (e).

7. Which one of the following statements is <u>false</u>?

- (a) $||A||_2 = \sigma_1$, where σ_1 is the largest singular value of a real matrix A.
- (b) $||A^{-1}||_2 = \frac{1}{\sigma_1}$, where σ_1 is the largest singular value of an invertible, real matrix A.
- (c) If $\|\cdot\|_q$ and $\|\cdot\|_p$ are both vector p-norms, then they are equivalent, i.e., there exist constants C_1 and C_2 such that $C_1 \|\mathbf{x}\|_q \le \|\mathbf{x}\|_p \le C_2 \|\mathbf{x}\|_q$ for all vectors \mathbf{x} .
- (d) An orthogonal matrix, Q, satisfies $||Q||_2 = 1$.
- (e) For any vector \mathbf{x} , $\|\mathbf{x}\|_1 \ge \|\mathbf{x}\|_2$.
- 8. Let A be an $n \times n$ matrix. Which of the following properties would necessarily imply that A is singular?
 - I. The rows of A are linearly dependent.
 - II. A zero diagonal element is encountered while performing LU factorization (without pivoting).
 - III. $A\mathbf{z} = \mathbf{0}$, for some $\mathbf{z} \neq \mathbf{0}$.
 - (a) II only
 - (b) I and II only
 - (c) I and III only
 - (d) II and III only
 - (e) I, II and III
- 9. Which of the following statements is \underline{false} ?
 - (a) The number of solutions of $A\mathbf{x} = \mathbf{b}$ may depend on \mathbf{b} .
 - (b) If A is singular, then $A\mathbf{x} = \mathbf{b}$ has either no solution or infinitely many solutions.
 - (c) If $\mathbf{b} = A\mathbf{x}$ for some \mathbf{x} , then \mathbf{b} must be in the columnspace of A.
 - (d) Solving a triangular system by forward or backward substitution requires $O(n^2)$ flops.
 - (e) The LU and Cholesky factorizations of a symmetric, positive definite matrix would be exactly the same.

- 10. Which of the following statements about the Singular Value Decomposition (SVD) are true?
 - I. Every real matrix has an SVD.
 - II. If a matrix Q is orthogonal, then its singular values are all 1.
 - III. A matrix with rank r will have exactly r singular values that are greater than 0.
 - (a) I only
 - (b) I and II only
 - (c) I and III only
 - (d) II and III only
 - (e) I, II and III
- 11. Let $A = U\Sigma V^T$ be the Singular Value Decomposition (SVD) of the matrix $A \in \mathcal{R}^{m \times n}$ and let A^+ denote the pseudoinverse of A. Which of the following statements are true?
 - I. $\operatorname{rank}(A) \le \min(m, n)$.
 - II. $A^+ = V \Sigma^+ U^T$ where Σ^+ is the pseudoinverse of Σ .
 - III. The columns of U are mutually orthogonal, but need not be of unit length.
 - (a) I only
 - (b) II only
 - (c) III only
 - (d) I and II only
 - (e) I and III only

Written Response

- 12. Linear Systems and LU Factorization.
 - (a) Given a nonsingular system of linear equations $A\mathbf{x} = \mathbf{b}$, what effect on the solution vector \mathbf{x} results from each of the following actions?
 - i. Permuting the rows of $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$.
 - ii. Permuting the columns of A.
 - iii. Multiplying both sides of the equation from the left by a nonsingular matrix M.
 - (b) Consider the symmetric matrix

$$A = \begin{pmatrix} 2 & 4 & 6\\ 4 & 11 & 15\\ 6 & 15 & 23 \end{pmatrix}.$$

- Find unit lower triangular matrix L and upper triangular matrix U such that A = LU.
- Use the factorization A = LU that you found above to express A as $A = LDL^T$, where D is a diagonal matrix.
- Use the factorization $A = LDL^T$ to find the Cholesky factorization of A, i.e., $A = R^T R$, where R is an upper triangular matrix.
- (c) Explain how you would use the factors L and U to solve the linear equations $A\mathbf{x} = \mathbf{b}$.

13. SVD Let A be an $n \times n$ matrix. A right inverse of A is a matrix B such that

$$AB = I,$$

and a left inverse of A is a matrix C such that

$$CA = I.$$

When A is full rank, then it has both right and left inverses and they are equal, i.e., $B = C = A^{-1}$. However, numerically, the left inverse is not necessarily a good right inverse and vice versa, as we will now demonstrate.

Let $A = U\Sigma V^T$, where U and V are $n \times n$ orthogonal matrices

$$U = \begin{pmatrix} | & | & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_n \\ | & | & | \end{pmatrix}, \quad V = \begin{pmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \\ | & | & | \end{pmatrix},$$

and Σ is an $n \times n$ diagonal matrix

$$\Sigma = \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix}$$

with

$$\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n > 0.$$

- (a) Give an explicit expression for A^{-1} .
- (b) Let $X = A^{-1} + \epsilon \mathbf{v}_n \mathbf{u}_1^T$, where $\epsilon \in \mathbb{R}$. Compute AX and XA. Express your answer as a rank-1 perturbation of the identity (i.e., in the form $I + \alpha \mathbf{u} \mathbf{v}^T$ for some scalar α , and vectors \mathbf{u} , and \mathbf{v}).
- (c) Given any two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, show that $||\mathbf{u}\mathbf{v}^T||_2 = ||\mathbf{u}||_2 ||\mathbf{v}||_2$. (Hint: recall that the 2-norm of a matrix is given by a its largest singular value).
- (d) Use the above result to compute $||AX I||_2$ and $||XA I||_2$. What does this say about the accuracy of X as a left and right inverse?