Lecture 1

- matrix-vector multiplication $A \vec{x}$
- by rows
- by columns
- column space of A
- for one vector
- for two linearly independent vectors
- column spaces of $A \in \mathbb{R}^{3 \times m}$
- column spaces of invertible $A \in \mathbb{R}^{n \times n}$
- rank of A
- dimension of column space of A
- dimension of row space of A
- matrix-matrix multiplication $A B$
- using inner products (row of A dot column of B)
- using outer products (column of A outer proudct with row of B)
- CR factorization
- rank 1 matrix (outer product matrix)
- as building blocks of matrices (e.g., CR, LU, eigenvalue decomposition, SVD, etc.)

Lecture 2

- four fundamental subspaces
- range(A) (or columnspace(A))
- nullspace(A)
$-\operatorname{range}\left(A^{T}\right)$ (or rowspace(A))
- nullspace $\left(A^{T}\right)$
- rowspace $(\mathrm{A}) \perp$ nullspace (A)
- rowspace $\left(A^{T}\right) \perp$ nullspace $\left(A^{T}\right)$
- find columnspace or rowspace of a small matrix
- find nullspace of small or simple matrix
- $\operatorname{rank}(\mathrm{AB})$
- $\operatorname{rank}(\mathrm{A}+\mathrm{B})$
- $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}\left(A A^{T}\right)=\operatorname{rank}(\mathrm{A})=\operatorname{rank}\left(A^{T}\right)$

Lecture 3

- solving linear systems
- algebraic interpretation: intersection of several lines (or hyperplanes) ("row view")
- geometric interpretation: generate rhs vector \vec{b} from columns of A ("column view")
- A singular and how that relates to algebraic and geometric interpretations
- A nonsingular, relation to
- determinant
- inverse
- rank
- nullspace
- existence and uniqueness of solutions to $A \vec{x}=\vec{b}$.
- triangular system
- upper triangular and forward substitution
- lower triangular and backward substitution
- preconditioning $M A \vec{x}=M \vec{b}$
- permutation matrix P
- row permutation $P A$
- column permutation $A P$
- LU factorization
- by hand for simple, small matrix
- LU (a.k.a. Gaussian Elimination) unstable without pivoting
- $P A=L U$ (LU with row pivoting)
- How to solve $A \vec{x}=\vec{b}$ with $L U$
- $L U$ operation count
- triangular solve (forward and backward substitution) operation counts
- estimating operation counts

Lecture 4

- orthogonal vectors
- orthogonal basis for a subspace
- orthonormal basis
- find components of vector \vec{v} in an orthonormal basis
- orthogonal subspaces
- orthogonal matrix, Q
- satisfies $Q^{-1}=Q^{T}$, i.e., $Q^{T} Q=Q Q^{T}=I$
- rotation or reflection
- orthogonal 2×2 matrices
- vector 2-norm
- triangle inequality
- law of cosines
- projector matrix P
- idempotence $P^{2}=P$
- orthogonal vs. non-orthogonal projector
- complementary projector $I-P$
- Householder reflection matrix

Lecture 5

- $A \vec{v}=\lambda \vec{v}$
- eigenvalue λ
- eigenvector \vec{v}
- scaling eigenvectors ($\alpha \vec{v}$ is also an eigenvector)
- transformations
- powers of A
- inverse of A
- similarity
- scalar shift $(A+s I)$
- characteristic polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)=0$
- finding eigenvalues and eigenvectors of a 2×2 matrix
- quadratic formula
- geometric multiplicity
- algebraic multiplicity
- trace, determinant of A and eigenvalues
- eigenvalues of triangular matrix
- diagonalizing a matrix and eigenvalue decomposition
- real, symmetric matrix

Lecture 6

- spd matrices
- spd conditions
- eigenvalues $\lambda_{i}>0$
- energy $\vec{x}^{T} S \vec{x}>0 \quad \forall \vec{x}$
- all leading determinants
- pivots in elimination
- eigen decomposition of symmetric matrix
- expressing any vector in terms of the eigenvectors of A
- $L D L^{T}$ factorization
- Cholesky factorization
- operation count compared to $L U$
- stability compared to $L U$

Lecture 7

- singular value decomposition (SVD): $A=U \Sigma V^{T}$
- singular vectors, \vec{u}_{i}, \vec{v}_{i}
- singular values, σ_{i}
- $A=\sum_{i=1}^{r} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{T}$
- reduced SVD: $A=U_{r} \Sigma_{r} V_{r}^{T}$

Lecture 8

- computing SVD for 2×2 matrices
- computing SVD for matrices that are almost in SVD form
- singular values of orthogonal matrix
- geometry of the SVD (maps unit circle to ellipse in 2D)
- SVD and rank
- four fundamental subspaces of A from the SVD
- null space of A
- row space of A (i.e., column space of A^{T})
- column space of A
- null space of A^{T}
- orthogonal subspaces
- null space $A \perp$ column space A^{T}
- null space $A^{T} \perp$ column space A

Lecture 9

- vector norms
- vector norm properties
- positive for non-zero vector
- scale comes out
- triangle inequality
- $\ell^{1}, \ell^{2}, \ell^{\infty}$ norms
- set of unit length vectors under $\ell^{1}, \ell^{2}, \ell^{\infty}$ norms
- p-norms
- 2-norm properties
$-\vec{v} \cdot \vec{w}=\|\vec{v}\|_{2}\|\vec{w}\|_{2} \cos \theta$
$-\vec{v} \cdot \vec{v}=\|\vec{v}\|_{2}^{2}$
- S-norm for symmetric matrix S
- matrix norms
- matrix norm properties
- positive for non-zero matrix
- scale comes out
- triangle inequality
- submultiplicative (for p-norms and Frobenius norm)
- induced matrix norms (1-, 2-, and ∞-norms)
- 1-norm : max abs column sum
$-\infty$-norm : max abs row sum
- 2-norm : σ_{1}
- Frobenius norm

$$
\begin{aligned}
-\|A\|_{F}^{2} & =\operatorname{trace}\left(A^{T} A\right) \\
-\|A\|_{F}^{2} & =\sigma_{1}^{2}+\ldots+\sigma_{n}^{2}
\end{aligned}
$$

- 2-norm and Frobenius norm invariant under orthogonal transformations

