
Lecture 10

• project one vector onto a direction given by a unit vector

• project one vector onto a direction given by an arbitrary vector

• Gram-Schmidt orthogonalization

• Modified Gram-Schmidt orthogonalization

• QR factorization

– by Gram-Schmidt

– by Householder

• Frobenius norm

Lecture 11

• least squares

• overdetermined system

• normal equations

– uniqueness of solution to normal equations

– geometric interpretation

• Least squares solution by pseudo-inverse

– minimum norm solution

Lecture 12

• least squares solution by QR (for A with linearly independent columns)

• least squares and Tikhonov regularization

– formulation

– makes the problem full rank

– makes the problem better conditioned

• weighted least squares formulation

• condition number of f

• condition number of a matrix

– definition

– properties

– well-conditioned vs. ill-conditioned

– condition number in 2-norm

– condition number in 2-norm of symmetric matrix
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Lecture 13

• iterative methods

• matrix splitting

– Jacobi

– Gauss-Seidel

• convergence rate

• eigenvalue problems

– power method

– normalize power iteration

– powert method and shifting

– inverse iteration

– Rayleigh quotient iteration

– QR algorithm for eigenvalues and eigenvectors

Lecture 14

• QR algorithm

– write it down

– similar matrix at each iteration

– converging to Schur form (revealing eigenvalues)

• shifted QR algorithm

• reduction to upper Hessenberg via Householder

– make QR more efficient

• Krylov subspaces

– good for large, sparse A

• Arnoldi iteration

– generates projections of A onto Krylov subspaces

– generates upper Hessenberg matrix

– then do QR on upper Hessenberg matrix to find approximate eigen-
values of A

• Arnoldi reduces to Lanczos for symmetric matrices

• upper Hessenberg reduces to tridiagonal for symmetric matrices
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Lecture 15

• residual

– relation to error

– and stopping criteria for iterative methods

• solvers based on Krylov subspaces

• Ax = b by GMRES

– minimizes 2-norm of residual over each Krylov subspace

• spd A, Ax = b by Conjugate Gradients (CG)

– recast as minimization of quadratic function

– minimizes A-norm of error over each Krylov subspace

• line search method

• steepest descent method

Lecture 16

• step size for exact line search on quadratic function

• CG and A-orthogonal search directions

– compared with steepest descent directions

– termination in n steps (theoretical)

• Gram-Schmidt A-orthogonalization

• preconditioning

Lecture 17

• nonlinear equations

• root-finding

• fixed point iteration

• convergence of fixed point iteration

• Newton’s method for roots

• unconstrained optimization

– optimality conditions

• Newton’s method for optimization

– scalar and multidimensional
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