Lecture 10

- project one vector onto a direction given by a unit vector
- project one vector onto a direction given by an arbitrary vector
- Gram-Schmidt orthogonalization
- Modified Gram-Schmidt orthogonalization
- QR factorization
 - by Gram-Schmidt
 - by Householder
- Frobenius norm

Lecture 11

- least squares
- overdetermined system
- normal equations
 - uniqueness of solution to normal equations
 - geometric interpretation
- Least squares solution by pseudo-inverse
 - minimum norm solution

Lecture 12

- least squares solution by QR (for A with linearly independent columns)
- least squares and Tikhonov regularization
 - formulation
 - makes the problem full rank
 - makes the problem better conditioned
- weighted least squares formulation
- condition number of f
- condition number of a matrix
 - definition
 - properties
 - well-conditioned vs. ill-conditioned
 - condition number in 2-norm
 - condition number in 2-norm of symmetric matrix

Lecture 13

- iterative methods
- matrix splitting
 - Jacobi
 - Gauss-Seidel
- convergence rate
- eigenvalue problems
 - power method
 - normalize power iteration
 - powert method and shifting
 - inverse iteration
 - Rayleigh quotient iteration
 - QR algorithm for eigenvalues and eigenvectors

Lecture 14

- QR algorithm
 - write it down
 - similar matrix at each iteration
 - converging to Schur form (revealing eigenvalues)
- shifted QR algorithm
- reduction to upper Hessenberg via Householder
 - make QR more efficient
- Krylov subspaces
 - good for large, sparse A
- Arnoldi iteration
 - generates projections of A onto Krylov subspaces
 - generates upper Hessenberg matrix
 - then do QR on upper Hessenberg matrix to find approximate eigenvalues of A
- Arnoldi reduces to Lanczos for symmetric matrices
- upper Hessenberg reduces to tridiagonal for symmetric matrices

Lecture 15

- \bullet residual
 - relation to error
 - and stopping criteria for iterative methods
- solvers based on Krylov subspaces
- Ax = b by GMRES
 - minimizes 2-norm of residual over each Krylov subspace
- spd A, Ax = b by Conjugate Gradients (CG)
 - recast as minimization of quadratic function
 - minimizes A-norm of error over each Krylov subspace
- line search method
- steepest descent method

Lecture 16

- step size for exact line search on quadratic function
- CG and A-orthogonal search directions
 - compared with steepest descent directions
 - termination in n steps (theoretical)
- Gram-Schmidt A-orthogonalization
- preconditioning

Lecture 17

- nonlinear equations
- root-finding
- fixed point iteration
- convergence of fixed point iteration
- Newton's method for roots
- unconstrained optimization
 - optimality conditions
- Newton's method for optimization
 - scalar and multidimensional