CS 210

Final

Spring 2016

Name	
Student ID	
Signature	

You may not ask any questions during the exam. If you believe that there is something wrong with a question, write down what you think the question is trying to ask, and answer that.

Question	Points	Score
1	3	
2	3	
3	3	
4	3	
5	3	
6	3	
7	3	
8	3	
9	3	
10	3	
11	4	
12	4	
13	4	
14	4	
15	4	
16	4	
17	4	
18	4	
19	4	
20	4	
21	6	
22	6	
23	9	
24	9	
Total	100	

True/False

For each question, indicate whether the statement is true or false by circling T or F , respectively.

1. (T/F) A system of nonlinear equations has either no solutions, exactly one solution, or infinitely many solutions.
2. (T/F) We can't use Newton's method for nonlinear systems of equations because it only makes sense for scalar equations.
3. (T/F) The convergence rate of Newton's Method for solving $f(x)=0$ depends on f.
4. (T / F) If the errors in successive iterations of an algorithm are $10^{-2}, 10^{-4}, 10^{-8}, 10^{-16} \ldots$, then the algorithm is exhibiting quadratic convergence.
5. (T/F) If the errors in successive iterations of an algorithm are $10^{-2}, 10^{-4}, 10^{-6}, 10^{-8} \ldots$, then the algorithm is exhibiting quadratic convergence.
6. (T/F) Given a square matrix A, power iteration, inverse power iteration, and Rayleigh quotient iteration are all algorithms that can be used to find an eigenvalue of A.

For questions 7-10, consider fixed point iteration for finding a point x^{*} such that $g\left(x^{*}\right)=x^{*}$.
7. (T/F) When convergent, the convergence rate is always linear.
8. (T/F) The iteration is locally convergent if $\left|g^{\prime}\left(x^{*}\right)\right|<1$.
9. (T/F) The iteration converges for any starting point if $\left|g^{\prime}\left(x^{*}\right)\right|<1$.
10. (T/F) Newton's Method for solving $f(x)=0$ is an example of fixed point iteration, with $g(x)=$ $x-f(x) / f^{\prime}(x)$.

Multiple Choice

Instructions: For the multiple choice problems, circle exactly one of (a) - (e).
11. Which of the following statements about the Singular Value Decomposition (SVD) are true?
I. Every real matrix has an SVD.
II. If a matrix Q is orthogonal, then its singular values are all 1.
III. The singular value decomposition of a symmetric real matrix is the same as its eigenvalue decomposition.
(a) I only
(b) I and II only
(c) I and III only
(d) II and III only
(e) I, II and III
12. Which of the following statements about the Least Squares (LS) problem $\min _{\mathbf{x}}\|\mathbf{b}-A \mathbf{x}\|_{2}$ are true?
I. If $\mathbf{b} \in \operatorname{Range}(A)$, then the LS problem has a residual of norm 0 .
II. The solution of the LS problems satisfies $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$.
III. The matrix $A^{T} A$ is always symmetric and positive definite.
(a) I only
(b) II only
(c) I and II only
(d) II and III only
(e) I, II and III
13. Which of the following statements about Newton's method for finding a root of a nonlinear equation are true?
(a) The cost per iteration of the Secant method is greater than that of Newton's method.
(b) Newton's methods exhibits quadratic convergence for any initial guess \mathbf{x}_{0}.
(c) Newton's method is an example of a fixed point iteration scheme.
(d) When Newton's method converges, then it converges with a quadratic convergence rate.
(e) None of the above.
14. Which of the following statements are true?
I. Finding the root of a function which is nearly "flat" around the root is a well-conditioned problem.
II. The bisection method has linear convergence with constant $1 / 2$.
III. If the errors in successive iterations of an algorithm are $10^{-2}, 10^{-4}, 10^{-6}, \ldots$, then the algorithm is exhibiting quadratic convergence.
(a) I only
(b) II only
(c) III only
(d) II and III only
(e) None
15. Let $A=U \Sigma V^{T}$ be the Singular Value Decomposition (SVD) of the matrix A and let A^{+}denote the pseudoinverse of A. Which of the following statements are true?
I. The SVD reveals the rank of a matrix.
II. $\quad A^{+}=U \Sigma^{+} V^{T}$ where Σ^{+}is the pseudoinverse of Σ.
III. The rank of A is the same as the rank of A^{+}.
(a) I only
(b) III only
(c) I and II only
(d) I and III only
(e) I, II and III
16. Which of the following statements about the Least Squares (LS) problem $\min _{\mathbf{x}}\|\mathbf{b}-A \mathbf{x}\|_{2}$ are true?
I. The solution of the LS problem always exists.
II. The solution of the LS problem is always unique.
III. If A is invertible, then the solution to the LS problem is $\mathbf{x}=A^{-1} \mathbf{b}$.
(a) I only
(b) III only
(c) I and II only
(d) I and III only
(e) I, II and III
17. Which of the following statements are true?
I. An eigenvector corresponding to a given eigenvalue is unique.
II. Scaling a matrix by a constant c will scale its eigenvalues by that constant.
III. If a matrix has an eigenvalue of 0 , then it is not invertible.
(a) I only
(b) II only
(c) III only
(d) II and III only
(e) I, II and III
18. Which of the following statements are true?
I. $\quad \lambda$ is an eigenvalue of A if and only if $\operatorname{det}(A-\lambda I)=0$.
II. If λ is an eigenvalue of A, then $|\lambda|<=\|A\|_{2}$.
III. If A is a symmetric positive definite matrix, then all its eigenvalues are distinct.
(a) I only
(b) II only
(c) III only
(d) I and II only
(e) I and III only
19. Consider solving $\mathbf{g}(\mathbf{x})=\mathbf{0}$, where $\mathbf{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Let $J_{g}(\mathbf{x})=\frac{\partial \mathbf{g}}{\partial \mathbf{x}}(\mathbf{x})$ be the the Jacobian matrix of \mathbf{g}. Which of the following statements are true?
I. If \mathbf{g} is a linear function, then $J_{g}(\mathbf{x})$ is a constant matrix.
II. If \mathbf{g} is a linear function, then $J_{g}(\mathbf{x})=0$.
III. Applying Newton's method, $\mathbf{s}_{k}=-J_{g}^{-1}\left(\mathbf{x}_{k}\right) \mathbf{g}\left(\mathbf{x}_{k}\right)$ is the Newton step such that $\mathbf{x}_{k+1}=$ $\mathbf{x}_{k}+\mathbf{s}_{k}$.
(a) I only
(b) II only
(c) III only
(d) I and III only
(e) II and III only
20. Consider an unconstrained minimization problem where we are seeking a minimizer \mathbf{x}^{*} of a function $f(\mathbf{x})$. Which of the following statements are true?
I. The negative gradient of $f,-\nabla f(\mathbf{x})$, points in a "downhill" direction of f.
II. A critical point \mathbf{x}^{*} of f is a minimizer of f if the Hessian matrix $H_{f}\left(\mathbf{x}^{*}\right)$ is negative definite.
III. A necessary condition for f to have a minimum at \mathbf{x}^{*} is that $\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$.
(a) I only
(b) II only
(c) III only
(d) I and III only
(e) II and III only

Written Response

21. Nonlinear Equations: Newton's Method. Consider the system of equations

$$
\begin{aligned}
x^{2}-y^{2} & =0 \\
2 x y & =1
\end{aligned}
$$

Carry out one iteration of Newton's Method for finding a solution to this system, with starting value $\mathbf{x}_{0}=(0,1)^{T}$.
22. Optimization. Consider the function

$$
\phi(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} A \mathbf{x}-\mathbf{b}^{T} \mathbf{x}+c,
$$

where $A \in \mathbb{R}^{n \times n}$ is symmetric.
(a) What are the critical points of ϕ ?
(b) How would you classify the critical points of ϕ as maxima, minima or saddle points?
23. Singular Value Decomposition. Let A be an $n \times n$ matrix. A right inverse of A is a matrix B such that

$$
A B=I
$$

and a left inverse of A is a matrix C such that

$$
C A=I .
$$

When A is full rank, then it has both right and left inverses and they are equal, i.e., $B=C=A^{-1}$. However, numerically, the left inverse is not necessarily a good right inverse and vice versa, as we will now demonstrate.
Let $A=U \Sigma V^{T}$, where U and V are $n \times n$ orthogonal matrices

$$
U=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \ldots & \mathbf{u}_{n} \\
\mid & \mid & & \mid
\end{array}\right), \quad V=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{n} \\
\mid & \mid & & \mid
\end{array}\right)
$$

and Σ is an $n \times n$ diagonal matrix

$$
\Sigma=\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right)
$$

with

$$
\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}>0
$$

(a) Show that A is invertible and give an explicit expression for A^{-1}.
(b) Let $X=A^{-1}+\epsilon \mathbf{v}_{n} \mathbf{u}_{1}^{T}$, where $\epsilon \in \mathbb{R}$. Compute $A X$ and $X A$. Express your answer as a rank- 1 perturbation of the identity (i.e., in the form $I+\alpha \mathbf{u v}^{T}$ for some scalar α, and vectors \mathbf{u}, and \mathbf{v}).
(c) Given any two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$, show that $\left\|\mathbf{u v}^{T}\right\|_{2}=\|\mathbf{u}\|_{2}\|\mathbf{v}\|_{2}$. (Hint: recall that the 2-norm of a matrix is given by a its largest singular value).
(d) Use the above result to compute $\|A X-I\|_{2}$ and $\|X A-I\|_{2}$. What does this say about the accuracy of X as a left and right inverse?
24. Least Squares. Let $A \in \mathbb{R}^{m \times n}$, where $m>n$. Consider the least squares (LS) problem

$$
\min _{\mathbf{x}}\|\mathbf{b}-A \mathbf{x}\|_{2} .
$$

(a) Assume A has full rank. Show how you would use the QR decomposition $A=Q\binom{R}{0}$ to solve the LS problem.
(b) Now assume A is rank-deficient with rank $r<n$. Show how you would use the Singular Value Decomposition $A=U \Sigma V^{T}$, with $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right)$, to solve the LS problem.
(c) In parts (a) and (b) is the solution unique? Why or why not?
(d) What does it say about \mathbf{b} if $\min _{\mathbf{x}}\|\mathbf{b}-A \mathbf{x}\|_{2}=0$?

