Trupter 6 Optimization [LECTURE 10.]
objective (function)
· constrained vs. un constrained · feasible choices (or points)
duality
e.g. Smin weight (s.t. strength) (s.t. strength) (s.t. weight)
Smin cost (s.t. nutrition) > (S.t. cost =
$f: \mathbb{R}^n \to \mathbb{R}$, $S \subseteq \mathbb{R}^n$
find X* in \$ X minimiter"
(max f is min of -f -> cansider only minimization
f objective function (linear or & nonlinear usually differentiable).
S constraints inequalitées, or equalitées.
XES => X "feavible"
S= R" => "un constrained" CLASSIFICATION CLASSIFICATION
$\sqrt{1}$ 1 12 m of $\sqrt{2}$

min f(x)subjecto g(x) = 0, and $h(x) \leq 0$. Sigih linear or affire

bigih linear or affire

This linear programming

any of figih nonlinear

nonlinear programming

 $f(x^*) \leq x$ $\forall x \in S$ global minimum $f(x^*) \leq x$ $\forall x \in S$ local minimum

Unless special problem, usually can't quarantee global min

could, e.g., try many different starting points.

Convex programming problems

"discrete optimization" integer programming

\$6.2.2. Unconstrained Optimality Conditions Scalar case: f'(x) = 0f''(x) > 0min f"(x) <0 E.g., x^3 (inflection point), inconclusive f''(x) = 0 x^4 (minimum), -x^4 (maximum) Vector case: f(x) , $x \in \mathbb{R}^n$ gradient of f. The points uphill

The points downhill

F(x+s) = f(x) + Df(x+xs)Ts for some deformation choose s = -Rf

First order necessary

Condition

Df(x max)Ts + Matth & E(0,1)

lut S=~ PF(X) (Stationary pt. f(x-arf)=f(x)-2rfTrf+ x2 rfTH of +.... <pre

f(x+s) = f(x) + Df(x) $+ \frac{1}{2} s^{T}(+e) s + \cdots$

Taylor's theorem

 $\nabla f(x) = 0$ first-order necessary condition E system of nonlinear equations. x is a "critical point" = necessary, but not sufficient - x may be min, max, or neither. (saddle pt.). F: R" - R twice differentiable Hessian matrix of f $H_f: \mathbb{R}^n \to \mathbb{R}^{n \times n}$ $H_{f}(x) = \begin{cases} \frac{\partial^{2}f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2}f(x)}{\partial x_{1}\partial x_{2}} & \frac{\partial^{2}f(x)}{\partial x_{1}\partial x_{1}} \\ \frac{\partial^{2}f(x)}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f(x)}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2}f(x)}{\partial x_{n}^{2}} \end{cases}$ if and partial derivs of & continuous, then Hy Symmetric Let x* be a critical pt. of f. + that f: R"->R is twice continuously different iable. Taylor's theorem, SEIRh $f(x^*+s) = f(x) + \nabla f(x^*)^T s + \frac{1}{2} s^T H_f(x^*+\alpha s) s$ $\alpha \in (0,1)$

Hf(x^*) > 0 Second-order sufficient condition CLASSIFICATION $\nabla f^*(x^*) = 0$, f Hf(x^*) is Pos. def $\Rightarrow x^*$ is a min of f Note: Hf(x^*) > 0 then neg. def $\Rightarrow x^*$ is a max of f f is convex in some indef $\Rightarrow x^*$ is a saddle pt. of f noted of x^* . Test for positive définitoress:

1. try to compute Chilesky factorijation } simple +
2. LDLT
3. eigenvalues — expensive!

Example. 6.5 Classifying Critical Ptc

$$f(x) = 2x_1^3 + 3x_1^2 + 12x_1x_2 + 3x_2^2 - 6x_2 + 6$$

$$\nabla f(x) = \begin{pmatrix} 6x_1^2 + 6x_1 + 12x_2 \\ 12x_1 + 6x_2 - 6 \end{pmatrix} = 0$$

Solving
$$\nabla f(x) = 0$$
, get $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$ eritical points

$$H_f(x) = \begin{pmatrix} 12x_1 + 6 & 12 \\ 12 & 6 \end{pmatrix}$$
 symmetric

soldle
$$H_f(\binom{1}{-1}) = \begin{pmatrix} 12+6 & 12 \\ 12-6 \end{pmatrix} = \begin{pmatrix} 19 & 12 \\ 12-6 \end{pmatrix}$$
 not p.def x, $\lambda = 25.4, -1.4$

$$\frac{\log 1}{\min}$$
 $H_f((\frac{3}{-3})) = (\frac{30}{12}) pos dy , 1 = 35.0, 1.0$