Chapter 6 Optimization

- Objective (function)
- constrained vs. unconstrained
- feasible choices (or points)
duality

$$
\begin{aligned}
& \text { e.g. } \begin{array}{l}
\left\{\begin{array} { l }
{ \text { min weight } } \\
{ \text { sit. Strength } }
\end{array} \leftrightarrow \left\{\begin{array}{ll}
\max & \text { strength. } \\
\text { s.t. } & \text { weight } \leq
\end{array}\right.\right. \\
\left\{\begin{array} { l }
{ \text { min cost } } \\
{ \text { sit. nutritoin } }
\end{array} \leftrightarrow \left\{\begin{array}{ll}
\max & \text { nutrition } \\
\text { sit. } & \text { cost }
\end{array}\right.\right. \\
f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad S \subseteq \mathbb{R}^{n}
\end{array} \\
& \text { find } x^{*} \text { in } S
\end{aligned}
$$

($\max f$ is min of $-f \rightarrow$ consider only nainimization)
f objective function (linear or \$ noulinean usually differentiable).
S constraints
inequalities, orequalities.

$$
\begin{aligned}
& x \in S \quad \Rightarrow \quad x \text { "feasible" } \\
& S=\mathbb{R}^{n} \quad \Rightarrow \quad \text { "unconstrained" }
\end{aligned}
$$

CLASSIFICATION

$$
\min _{x} f(x)
$$

subj. to $g(x)=0$, and

$$
h(x) \leq 0
$$

big, h linear or office
\Rightarrow linear programming any of f, g, h nonlinear
\Rightarrow nonlinear programming
$f\left(x^{*}\right) \leq x \quad \forall x \in S \quad$ global minimum
$f\left(x^{*}\right) \leq x \quad x \subset N\left(x^{*}\right) \leq S \quad$ local minimum

Unless special problem, usually can't guarantee global min - could, e.g. , try many different starting points.
\rightarrow Convex programming problems
"discrete optimization" integer programming
\$6.2.2 Unconstrained Optimality Condition

Scalar case:

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& \begin{array}{ll}
f^{\prime \prime}(x)>0 & \min \\
f^{\prime \prime}(x)<0 & \max
\end{array} \\
& \mathrm{f}^{\prime \prime}(\mathrm{x})=0 \quad \text { inconclusive } \\
& \text { Ecg., } x^{\wedge} 3 \text { (inflection point), } \\
& x^{\wedge} 4 \text { (minimum), } \\
& -x^{\wedge} 4 \text { (maximum) }
\end{aligned}
$$

Vector case:

$$
\begin{gathered}
f(x), \quad, \quad x \in \mathbb{R}^{n} \\
\nabla f=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right)
\end{gathered}
$$

gradient of f.
∇f points uphill $-\nabla f \quad$ points downhill
$f(x+s)=f(x)+\nabla f(x+\alpha s)^{\top} s$ for some $\alpha(t)$, choose $s=-\nabla f$

First order necessary
Taylor's theorem
let $s=-\alpha \nabla f(x)$
Stationaypt. $f(x-\alpha \nabla f)=f(x)-\alpha \nabla f^{\top} \nabla f+\frac{\alpha^{2}}{2} \nabla f^{\top} H \nabla f+\ldots$. equilibrivmpt.
$\nabla f(x)=0 \quad$ first -order necessary condition
system of nonlinear equations.
x is a "critical point" necessary, but not sufficient

- x may be min, max, or neither. (saddle pt.).
$f: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad$ twice differentiable
Hessian matrix of f

$$
H_{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}
$$

$$
H_{f}(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}{ }^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & & \ddots & \\
\vdots & & & \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & & & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right]
$$

if $2^{\text {nd }}$ partial deriv's of f continuous, then H_{f} symmetric:
Let x^{*} be a critical pt. of $f .+$, that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable.
Taylor's theorem, $s \in \mathbb{R}^{n}$

$$
\begin{gathered}
f\left(x^{*}+s\right)=f(x)+\nabla f\left(x^{+}\right)^{\top} s+\frac{1}{2} s^{\top} H_{f}\left(x^{+}+\alpha s\right) s \\
\alpha \in(0,1)
\end{gathered}
$$

$H_{f}\left(x^{*}\right)>0$ second-order sufficient condition CLASSIFICATION $\nabla f^{*}\left(x^{*}\right)=01 .+H_{f}\left(x^{*}\right)$ is

- pos. def $\Rightarrow x^{*}$ is a min of f
- neg. def $\Rightarrow x^{*}$ is a max of f
- indef $\Rightarrow x^{*}$ is a saddle p^{+}. if f

Note: $H_{f}\left(x^{*}\right)>0$ then f is convex in some ashe of x^{*}.

Test for positive definiteness:

1. try to compute Chilesky factorization $\left\{\begin{array}{l}\text { simple } \\ \text { cheap }\end{array}\right.$
2. $\angle D L^{\top}$
3. eigenvalues - expensive!

Example. 6. 5 Classifying Critical Pts.

$$
\begin{aligned}
& f(x)=2 x_{1}^{3}+3 x_{1}^{2}+12 x_{1} x_{2}+3 x_{2}^{2}-6 x_{2}+6 \\
& \nabla f(x)=\binom{6 x_{1}^{2}+6 x_{1}+12 x_{2}}{12 x_{1}+6 x_{2}-6}=0
\end{aligned}
$$

Solving $\nabla f(x)=0$, get $\binom{x_{1}}{x_{2}}=\binom{1}{-1},\binom{2}{-3} \frac{\text { critical }}{\text { points }}$

$$
H_{f}(x)=\left(\begin{array}{cc}
12 x_{1}+6 & 12 \\
12 & 6
\end{array}\right) \quad \text { symmetric. }
$$

sade $H_{f}\left(\binom{1}{-1}\right)=\left(\begin{array}{cc}12 \times 6 & 12 \\ 12 & 6\end{array}\right)=\left(\begin{array}{cc}18 & 12 \\ 12 & 6\end{array}\right)$ not $p . d e f x, \lambda \cong 25.4,-1.4$ $\frac{\text { local }}{\min } H_{f}\left(\binom{2}{-3}\right)=\left(\begin{array}{cc}30 & 12 \\ 12 & 6\end{array}\right)$ pos def, $\lambda \cong 35.0,1.0$

