Homework 3
 CS 210

Multiple Choice and T/F

1. Let A be an invertible, ill-conditioned matrix. Which of the following matrices might be better conditioned than A ?
(a) $c A$ where c is a scalar.
(b) $D A$ where D is a diagonal matrix.
(c) A^{-1}
(d) $P A$ where P is a permutation matrix.
(e) None of the above.
2. Consider the least squares problem $\min _{\mathbf{x}}\|\mathbf{b}-A \mathbf{x}\|_{2}$. Which of the following statements are necessarily true?
(a) If \mathbf{x} is a solution to the least squares problem, then $A \mathbf{x}=\mathbf{b}$.
(b) If \mathbf{x} is a solution to the least squares problem, then the residual vector $\mathbf{r}=\mathbf{b}-A \mathbf{x}$ is in the nullspace of A^{T}.
(c) The solution is unique.
(d) A solution may not exist.
(e) None of the above.
3. Which of the following statements about eigenvalue problems are true? Circle each true statement.
(a) A defective eigenvalue is one where the geometric multiplicity is greater the algebraic multiplicity.
(b) A good way to compute eigenvalues is by finding roots of the associated characteristic polynomial.
(c) An orthogonal projection matrix has one eigenvalue equal to 0 and the other eigenvalues equal to 1.
(d) Symmetric matrices have orthogonal set of eigenvectors.
(e) A projection matrix must have at least one eigenavlue equal to 0 .
(f) A matrix that has an orthogonal set of eigenvectors can be decomposed as $A=U \Lambda U^{T}$ where U is orthogonal and Λ is diagonal.
4. A Householder matrix H
(a) has condition number 1.
(b) has the property $\|H\|_{2}=1$.
(c) is uniquely defined by $H \mathbf{x}=\mathbf{b}$ for two vector \mathbf{x} and \mathbf{b} such that $\|\mathbf{x}\|_{2}=\|\mathbf{b}\|_{2}$.
(d) Both (a) and (b).
(e) All of the above.

Written Problems

1. Given a symmetric $n \times n$ matrix A, show that two eigenvectors corresponding to two distinct eigenvalues must be orthogonal.
2. Show that a $n \times n$ Householder matrix $H=I-2 \mathbf{v v ^ { T }} / \mathbf{v}^{T} \mathbf{v}$ has an eigenvalue of 1 with multiplicity $n-1$ and an eigenvalue of -1 with multiplicity 1 .
3. Compare Newton's method and the Secant Method for solving a scalar nolinear equation. What are the advantages and disadvantages of each?
