Homework 2 CS 210

- 1. (Trefethen&Bau 2.6) If **u** and **v** are *m*-vectors, the matrix $A = I + \mathbf{u}\mathbf{v}^T$ is known as a rank-one pertubation of the identity. Show that if A is nonsingular, then its inverse has the form $A^{-1} = I + \alpha \mathbf{u}\mathbf{v}^T$ for some scalar α , and give an expression for α . For what **u** and **v** is A singular? If it is singular, what is null(A)?
- 2. (T&B 4.1) Determine SVDs of the following matrices (by hand calculation):

(a)
$$\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$$
, (b) $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, (c) $\begin{pmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$, (d) $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, (e) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

3. Let A be an $m \times n$ singular matrix of rank r with SVD

$$A = U\Sigma V^{T} = \begin{pmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{m} \end{pmatrix} \begin{pmatrix} \sigma_{1} & \cdots & \sigma_{r} &$$

where $\sigma_1 \geq \ldots \geq \sigma_r > 0$, \hat{U} consists of the first r columns of U, \tilde{U} consists of the remaining m - r columns of U, \hat{V} consists of the first r columns of V, and \tilde{V} consists of the remaining n - r columns of V. Give bases for the spaces range(A), null(A), range(A^T) and null(A^T) in terms of the components of the SVD of A, and a brief justification.

- 4. Show that for an $m \times n$ matrix of full column rank n, the matrix $A(A^T A)^{-1} A^T$ is an orthogonal projector onto range(A). Hint: use the SVD of A.
- 5. Consider the least squares problem $\min_{\mathbf{x}} ||\mathbf{b} A\mathbf{x}||_2^2$. Using the SVD of A given in Problem 3, show that
 - (a) the least squares solution \mathbf{x} satisfies

$$\mathbf{x} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_r \mathbf{v}_r, \quad \alpha_i = \frac{\mathbf{u}_i^T \mathbf{b}}{\sigma_i}$$

(b) the minimum residual $\mathbf{r} = \mathbf{b} - A\mathbf{x}$ satisfies $||\mathbf{r}||_2^2 = \sum_{i=r+1}^m (\mathbf{u}_i^T \mathbf{b})^2$.