Homework 2

CS 210

1. (Trefethen\&Bau 2.6) If \mathbf{u} and \mathbf{v} are m-vectors, the matrix $A=I+\mathbf{u v}^{T}$ is known as a rank-one pertubation of the identity. Show that if A is nonsingular, then its inverse has the form $A^{-1}=I+\alpha \mathbf{u v}^{T}$ for some scalar α, and give an expression for α. For what \mathbf{u} and \mathbf{v} is A singular? If it is singular, what is $\operatorname{null}(A)$?
2. (T\&B 4.1) Determine SVDs of the following matrices (by hand calculation):
(a) $\left(\begin{array}{cc}3 & 0 \\ 0 & -2\end{array}\right)$,
(b) $\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$,
(c) $\left(\begin{array}{ll}0 & 2 \\ 0 & 0 \\ 0 & 0\end{array}\right)$,
(d) $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$,
(e) $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$.
3. Let A be an $m \times n$ singular matrix of rank r with SVD

$$
\begin{aligned}
& =\left(\begin{array}{lll}
\hat{U} & \tilde{U}
\end{array}\right)\left(\begin{array}{cccccc}
\sigma_{1} & & & & & \\
& \ddots & & & & \\
& & \sigma_{r} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right)\binom{\hat{V}^{T}}{\tilde{V}^{T}}
\end{aligned}
$$

where $\sigma_{1} \geq \ldots \geq \sigma_{r}>0, \hat{U}$ consists of the first r columns of U, \tilde{U} consists of the remaining $m-r$ columns of U, \hat{V} consists of the first r columns of V, and \tilde{V} consists of the remaining $n-r$ columns of V. Give bases for the spaces range (A), null (A), range $\left(A^{T}\right)$ and null $\left(A^{T}\right)$ in terms of the components of the SVD of A, and a brief justification.
4. Show that for an $m \times n$ matrix of full column rank n, the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is an orthogonal projector onto range (A). Hint: use the SVD of A.
5. Consider the least squares problem $\min _{\mathbf{x}}\|\mathbf{b}-A \mathbf{x}\|_{2}^{2}$. Using the SVD of A given in Problem 3, show that
(a) the least squares solution \mathbf{x} satisfies

$$
\mathbf{x}=\alpha_{1} \mathbf{v}_{1}+\ldots+\alpha_{r} \mathbf{v}_{r}, \quad \alpha_{i}=\frac{\mathbf{u}_{i}^{T} \mathbf{b}}{\sigma_{i}}
$$

(b) the minimum residual $\mathbf{r}=\mathbf{b}-A \mathbf{x}$ satisfies $\|\mathbf{r}\|_{2}^{2}=\sum_{i=r+1}^{m}\left(\mathbf{u}_{i}^{T} \mathbf{b}\right)^{2}$.

