
Ray Tracing

Ray Tracing

Wikimedia Commons

Greg L.,Wikimedia Commons
up to 16 reflections per ray

Wikimedia Commons

shallow depth of field, area light sources,
diffuse inter-reflection

Basic Algorithm

1. cast view ray:
compute view ray
from camera through
pixel into scene
2. intersect: find
intersection of ray
with closest object
3. shade: compute the
color of the
intersection point

for each pixel

Ray Tracing Program

for each pixel do
 compute viewing ray
 find closest object that intersects ray
 if (ray hits an object with t in [0, inf]) then
 compute n
 evaluate shading model and set pixel to that color
 else
 set pixel color to the background color

Object-oriented design

object

sphere plane triangle

class object
{
 public:

 . . .

 bool Intersection(RAY& ray)=0;
 vec4 Normal(vec3& point)=0;
 Box Bounding_Box()=0;
}

Other classes: ray, light, shader, camera, world

Simple Ray Tracer

Add Phong Shading

Add Shadows

Add Reflections

Shadows

Shadows

for each pixel do
 compute viewing ray
 find closest object that intersects ray
 if (ray hits an object with t in [0, inf]) then
 compute n
 evaluate shading model and set pixel to that color
 else
 set pixel color to the background color

Shadows

for each pixel do
 compute viewing ray
 find closest object that intersects ray
 if (ray hits an object with t in [0, inf]) then
 compute n
 evaluate shading model and set pixel to that color
 else
 set pixel color to the background color

Shadows

for each pixel do
 compute viewing ray
 find closest object that intersects ray
 if (ray hits an object with t in [0, inf]) then
 compute n
 // e.g., phong shading
 add ambient component
 for each light

 compute shadow ray
 if (! shadow ray hits an object)
 add light’s diffuse and specular components

 else
 set pixel color to the background color

Reflections

Reflections

for each pixel do
 compute viewing ray
 find closest object that intersects ray
 if (ray hits an object with t in [0, inf]) then
 compute n
 evaluate shading model and set pixel to that color
 else
 set pixel color to the background color

for each pixel do
 compute viewing ray
 pixel color = cast_ray(viewing ray)

cast_ray:
 find closest object that intersects ray
 if (ray hits an object with t in [0, inf]) then
 compute n
 return color = shade_surface
 else
 return color = to the background color

shade_surface:
 color = ...
 compute reflected ray
 return color = (1-k) * color + k * cast_ray(reflected ray)

Reflections

