Lighting and Shading

Why we need shading

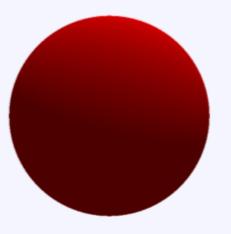
- Suppose we build a model of a red sphere
- We get something like



• But we want

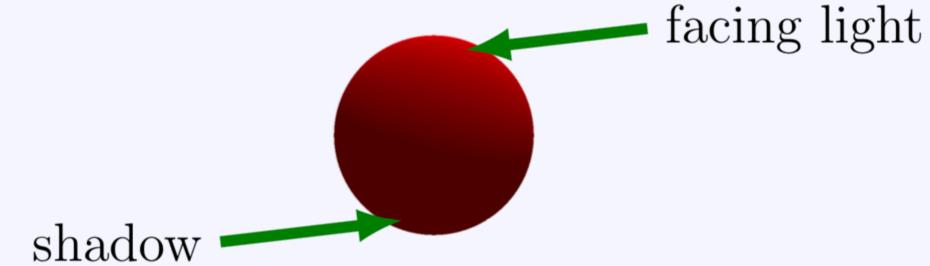
Shading

• Why does a real sphere look like this?

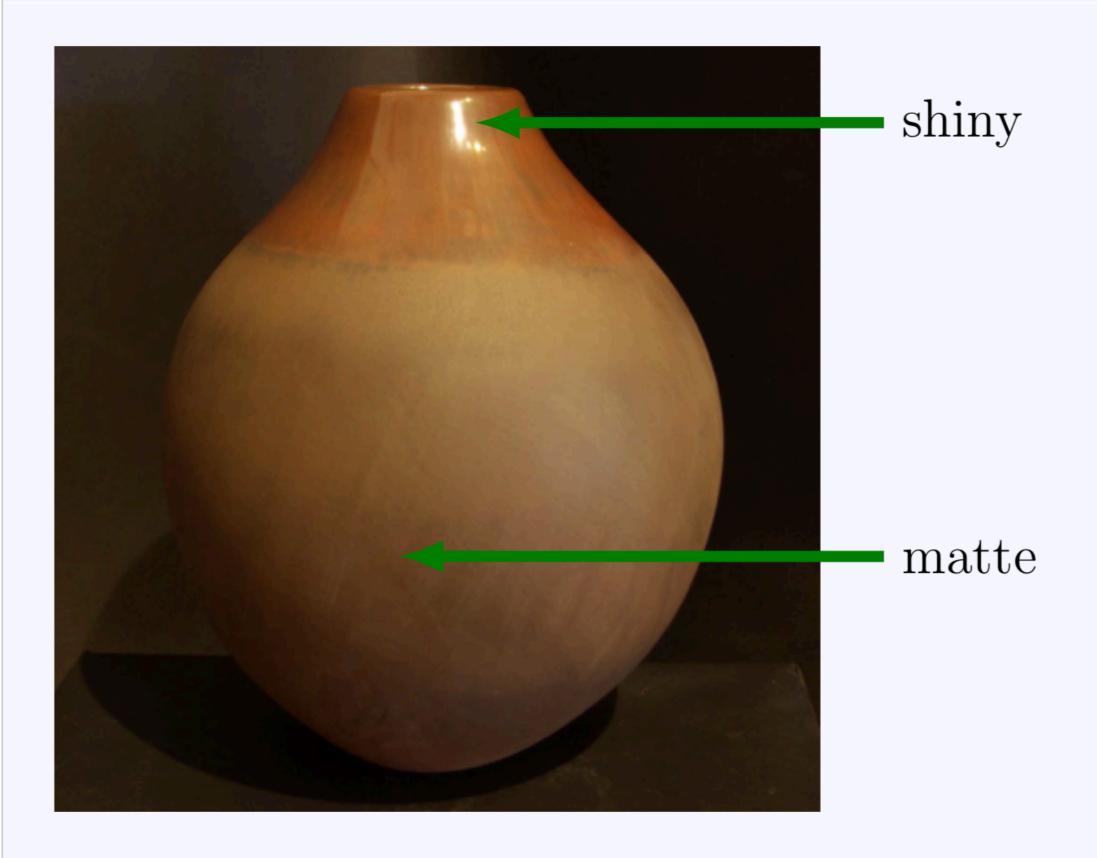


Shading - lighting

• Why does a real sphere look like this?



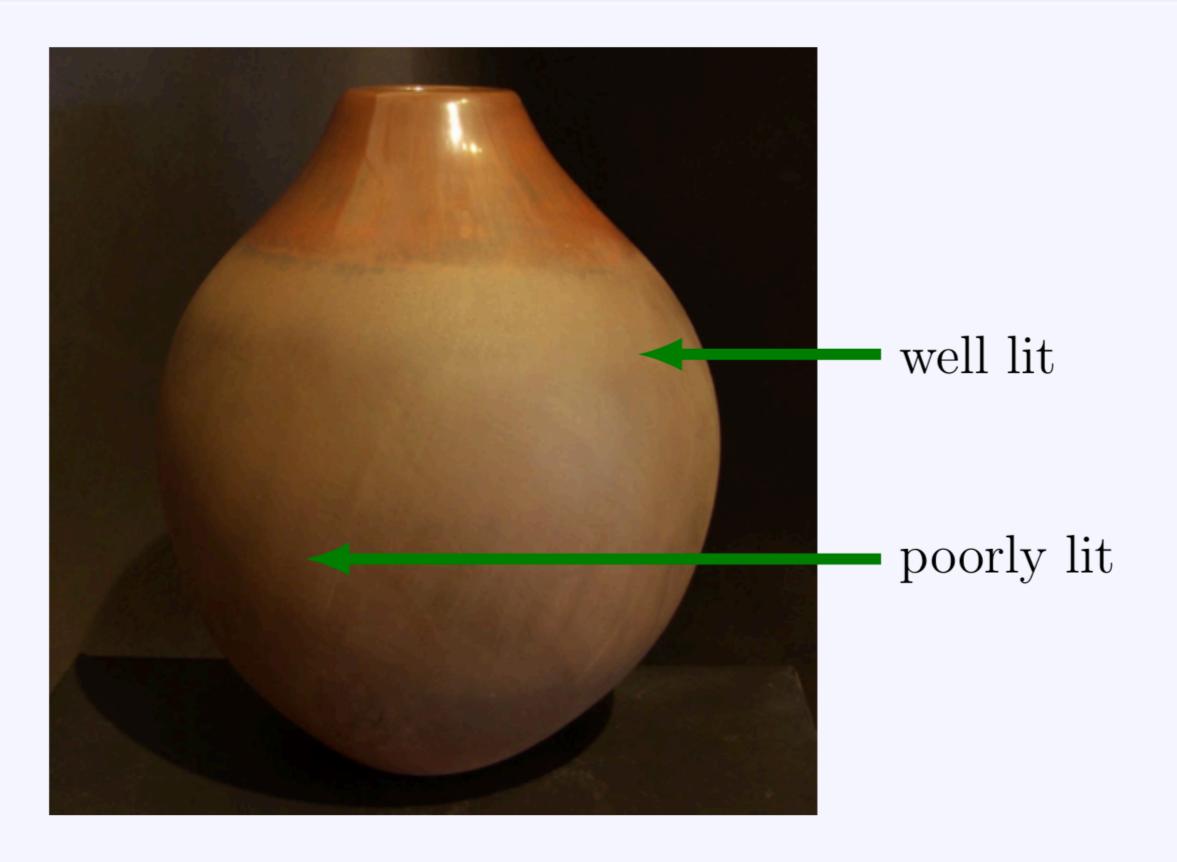
Shading - material properties



Shading - viewing location

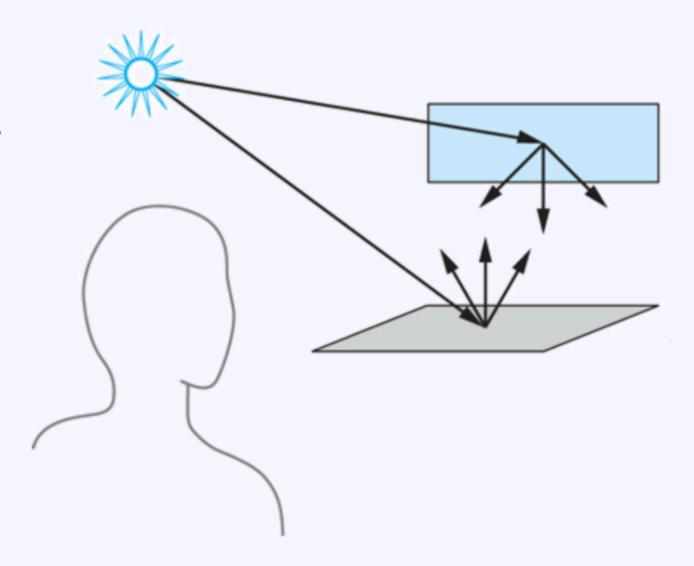
What if I move?

Shading - surface orientation



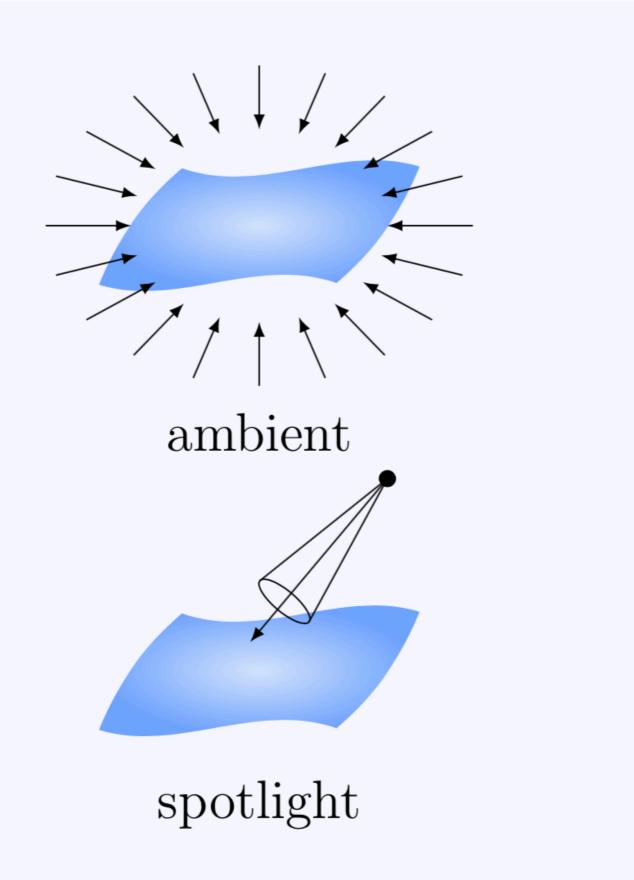
General rendering

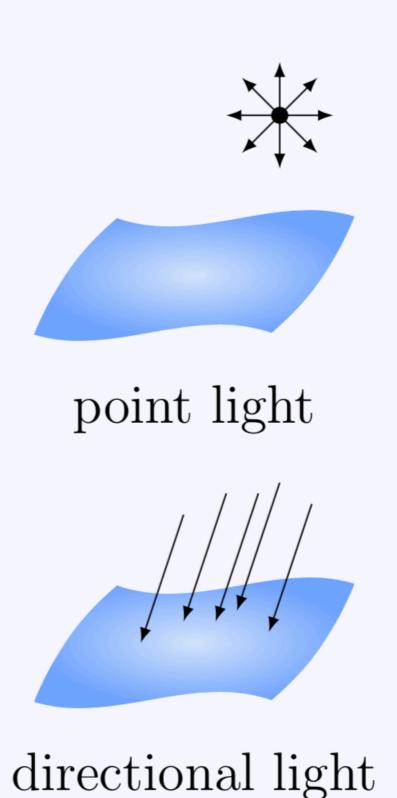
- Based on physics
 - conservation of energy
- Surfaces can
 - absorb light
 - emit light
 - reflect light
 - transmit light



Light Sources

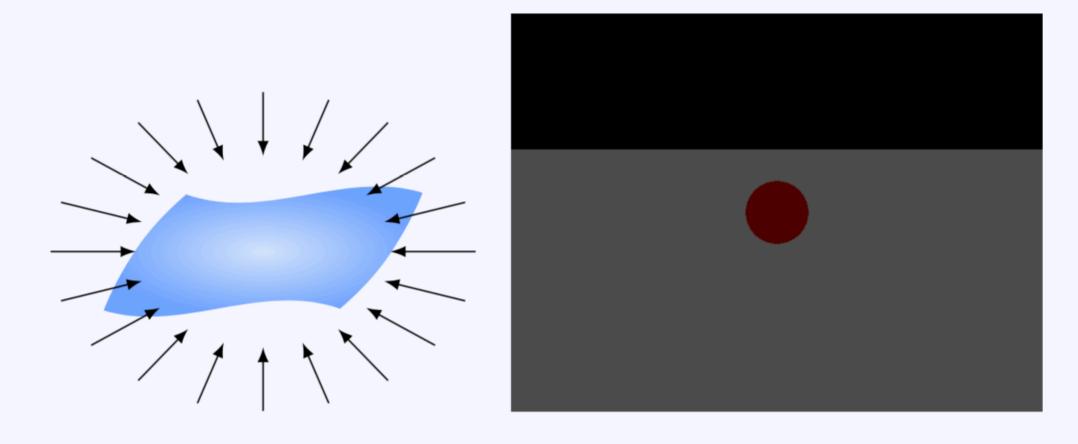
Idealized light sources





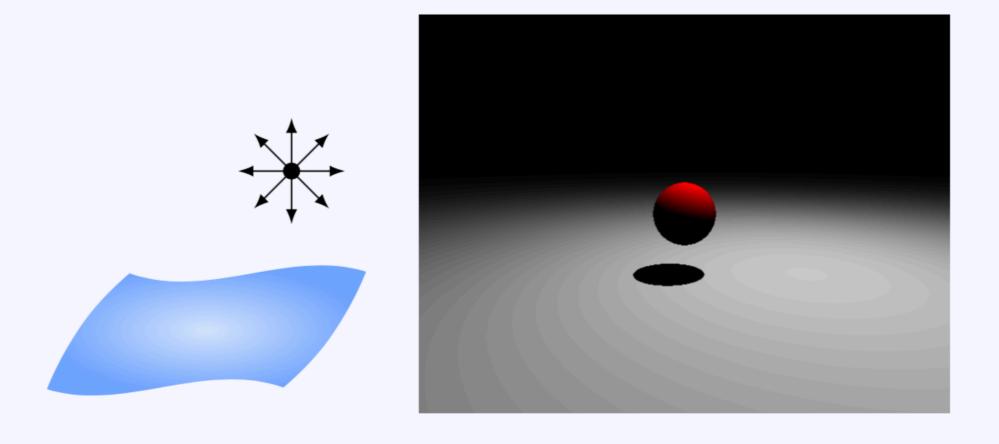
Ambient light

- Achieve uniform light level
- No shadows
- Same light level everywhere

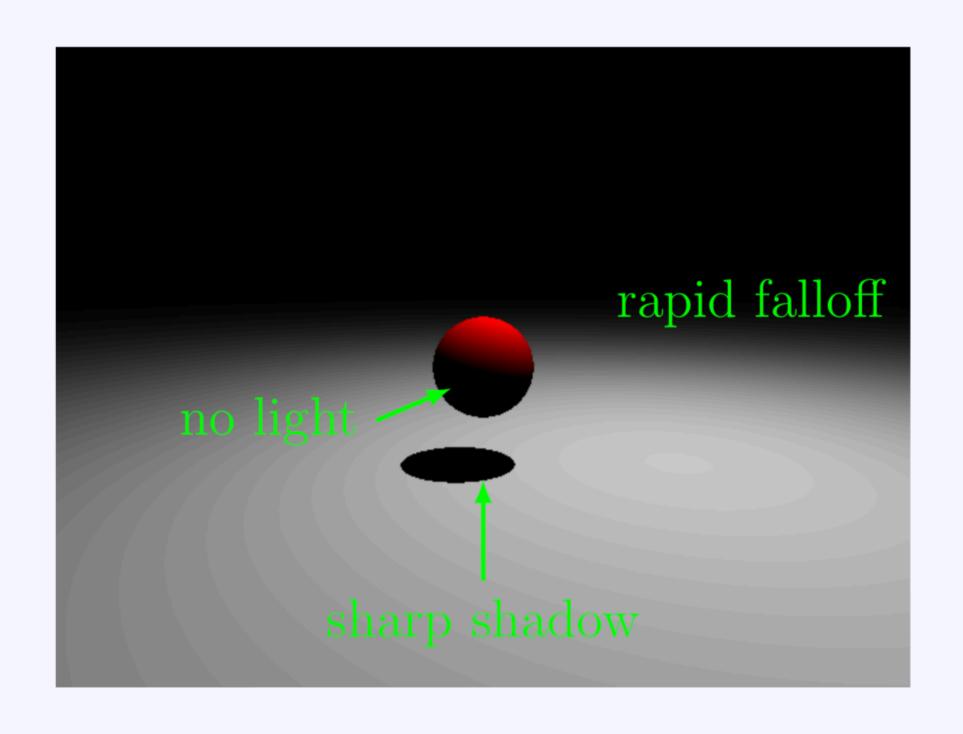


Point light

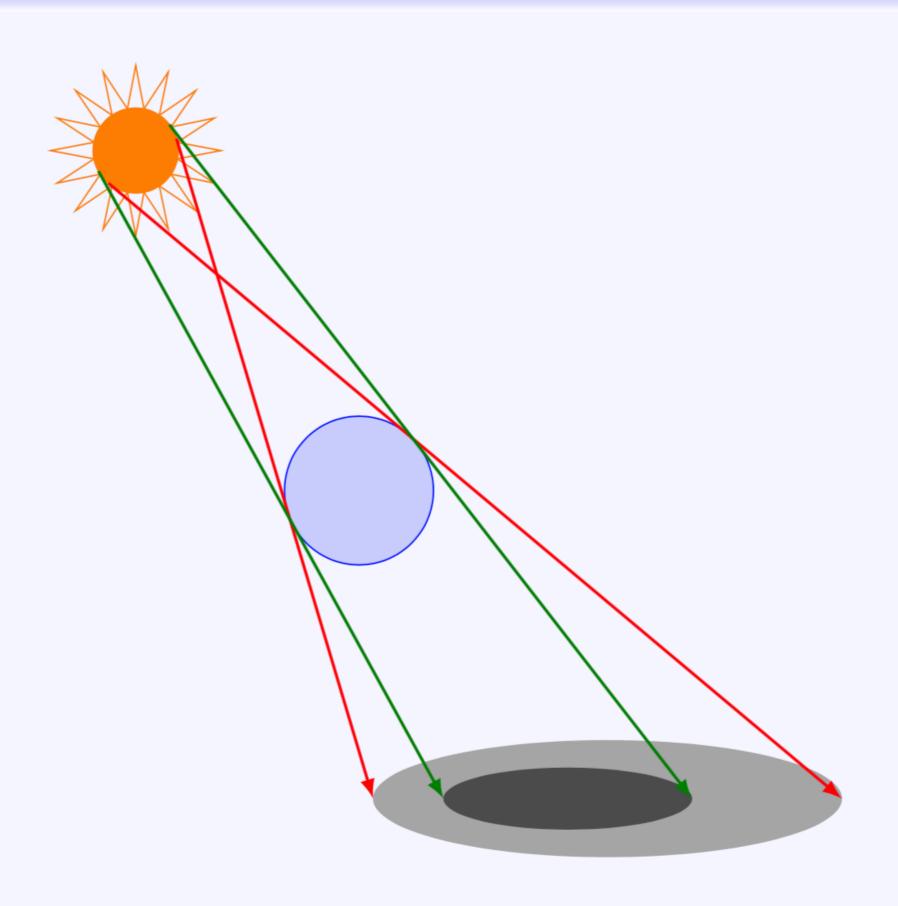
- Light emitted from a point **p**
- Uniform in all directions
- Falls off with distance: $\ell(\mathbf{x}) = \frac{1}{\|\mathbf{x} \mathbf{p}\|^2} L$



Point light - limitations

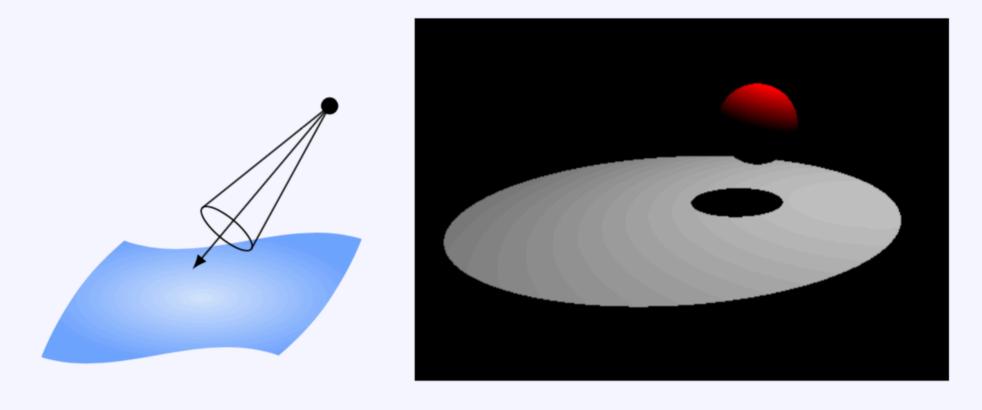


Soft shadows



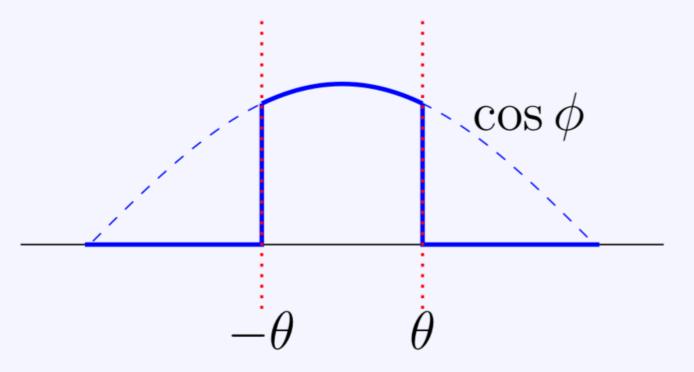
Spotlight

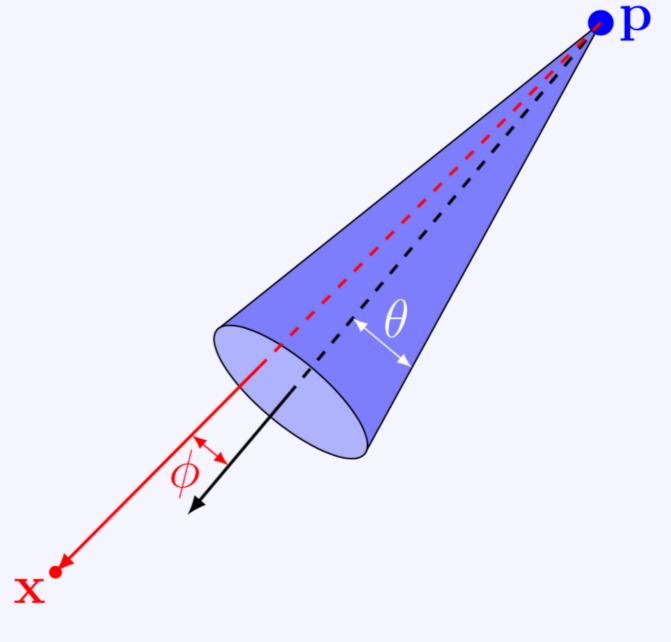
- Light emitted from a point **p**
- Emited in a cone
- Brightest in middle of cone
- Falls off with distance



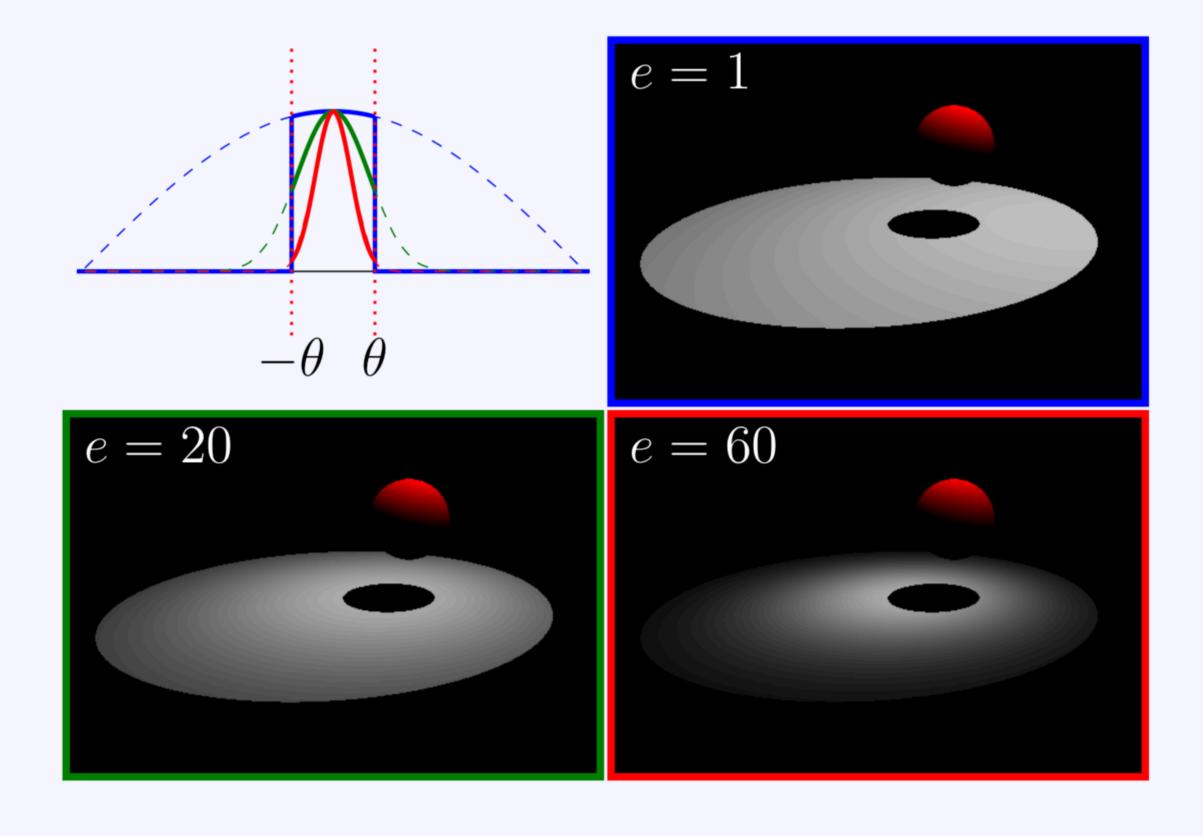
Spotlight

$$\ell(\mathbf{x}) = \frac{\cos^e \phi}{\|\mathbf{x} - \mathbf{p}\|^2} L$$



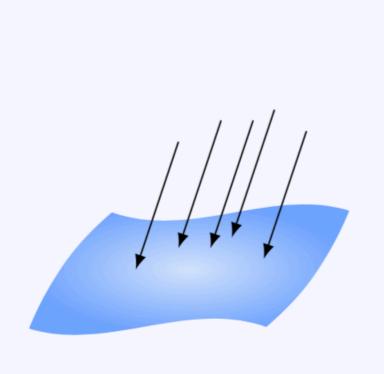


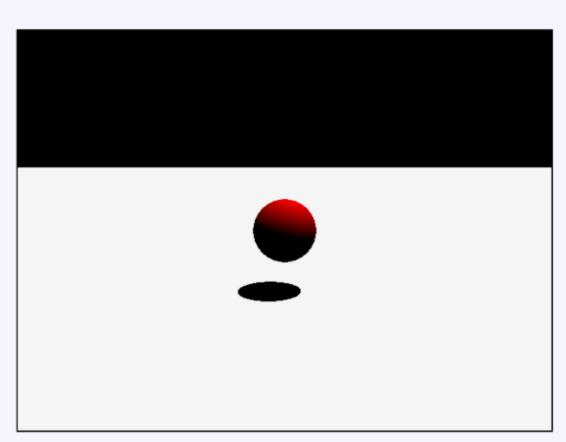
Spotlight - exploring e

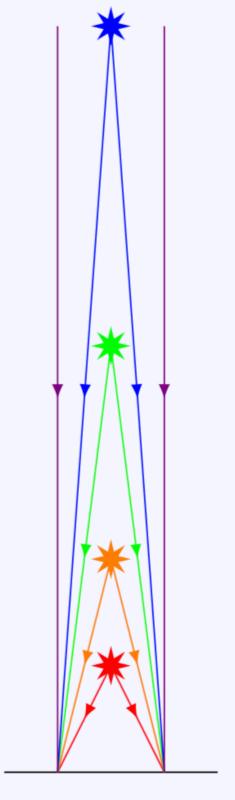


Directional light

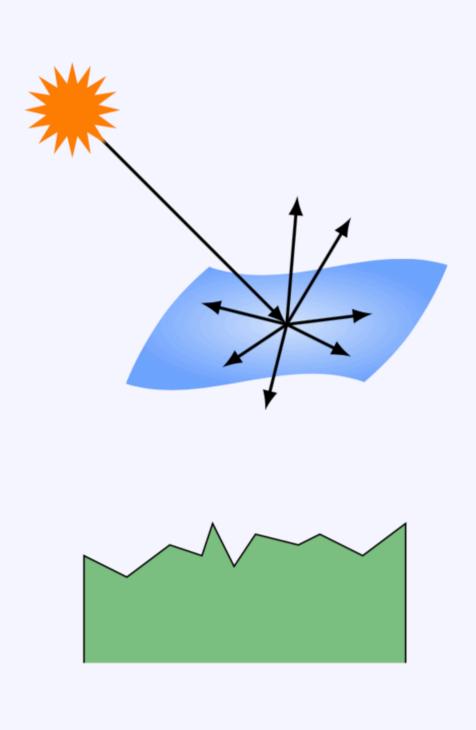
- Light source at infinity
- Rays come in parallel
- No falloff
- Characterized by direction

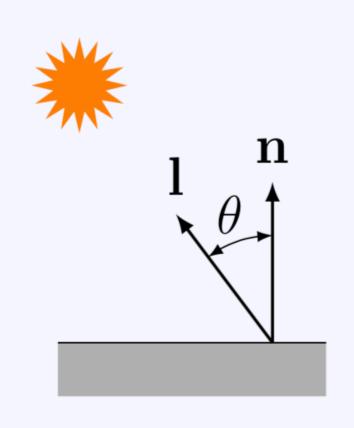


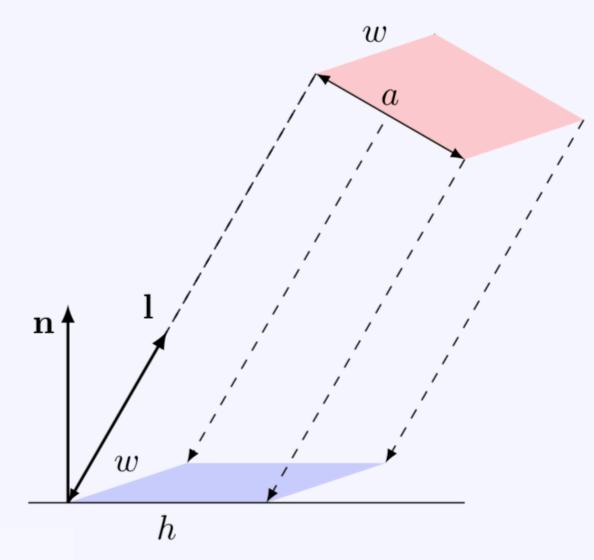




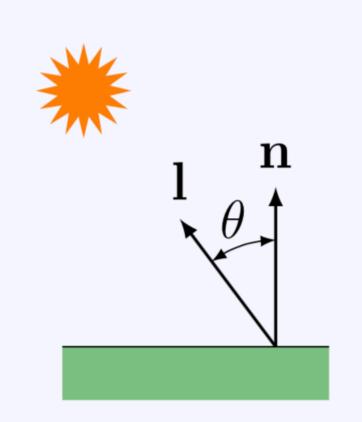
Shading

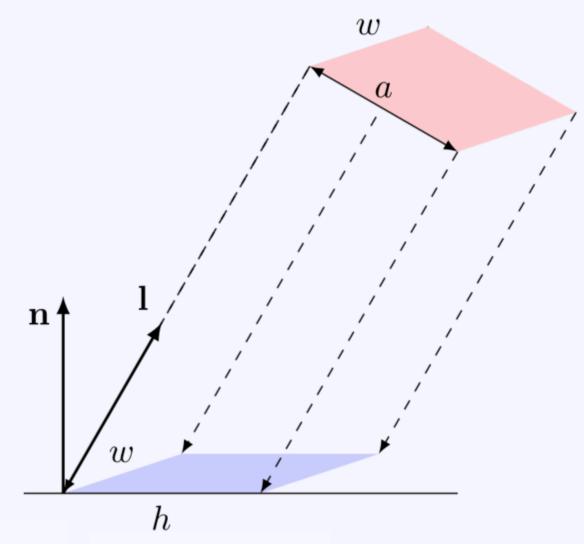




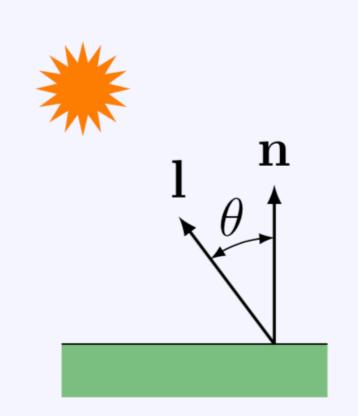


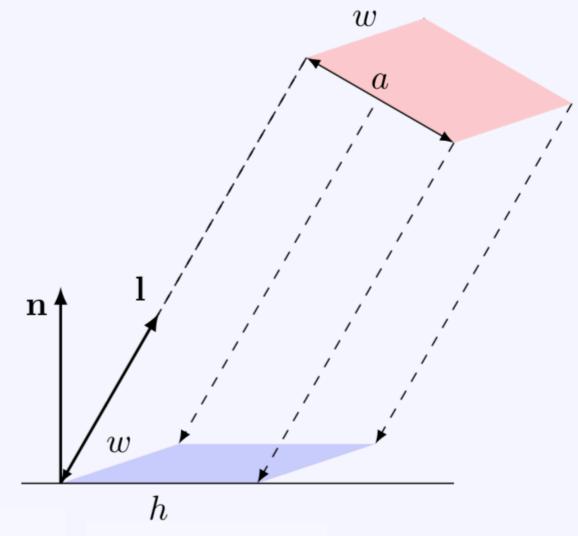
	Light	Incident	
Intensity	L	L'	
Energy	E = L w a	E = L' wh	





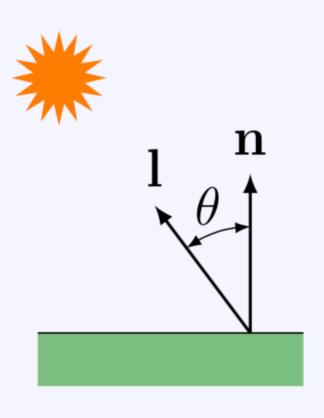
	Light	Incident	Reflected
Intensity	L	L'	I = RL'
Energy	E = L w a	E = L' w h	RE

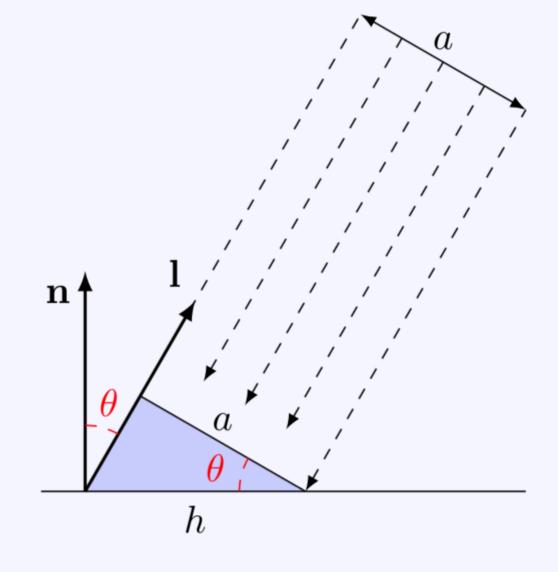




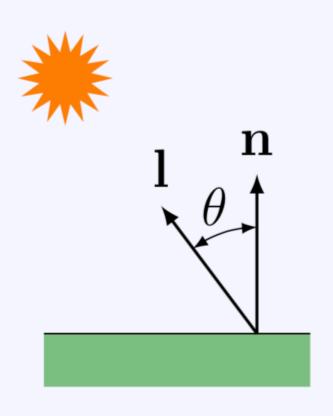
	Light	Incident	Reflected
Intensity	L	L'	I = RL'
Energy	E = L wa	E = L'wh	RE

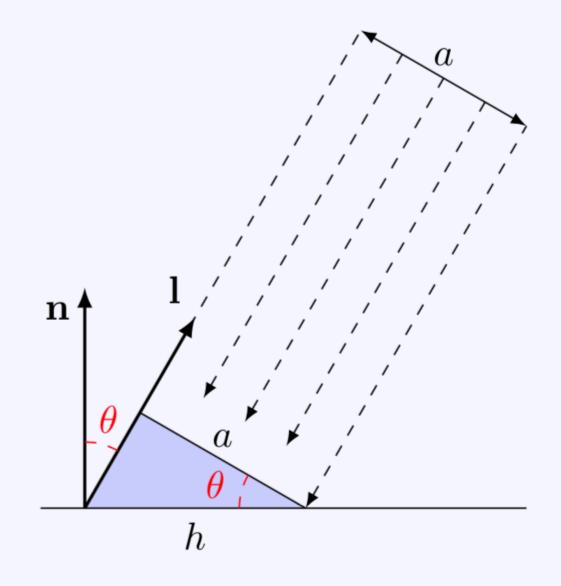
$$I = LR \frac{a}{h}$$



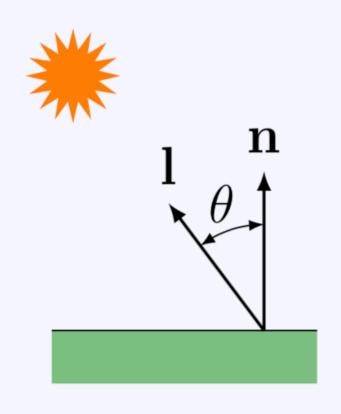


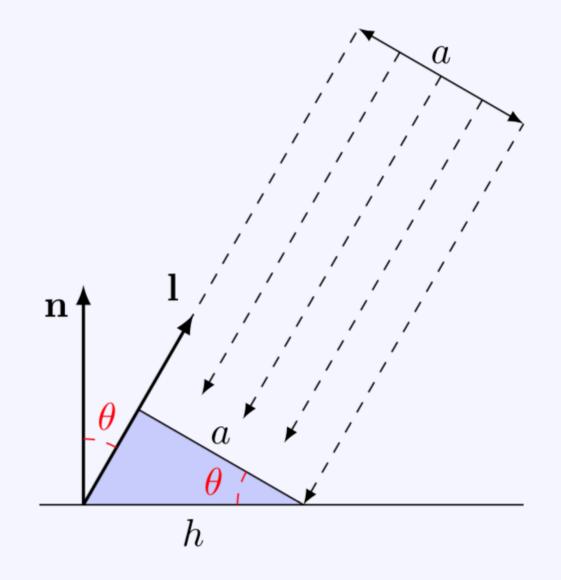
$$I = LR\frac{a}{h}$$



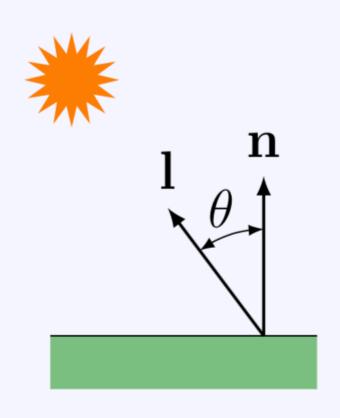


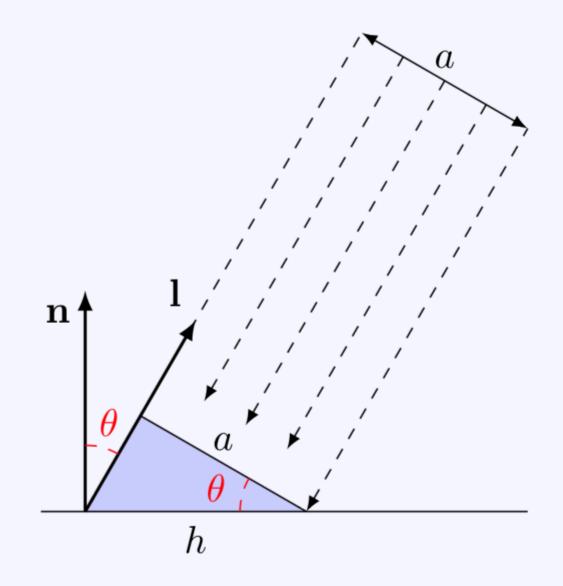
$$I = LR\frac{a}{h} = LR\cos\theta$$





$$I = LR\frac{a}{h} = LR\cos\theta = LR\mathbf{n} \cdot \mathbf{l}$$





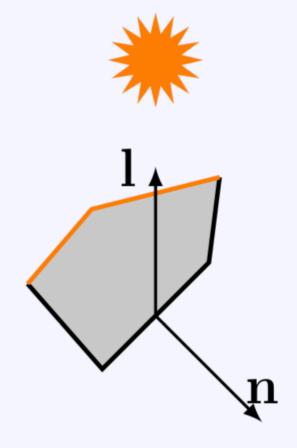
$$I = LR\frac{a}{h} = LR\cos\theta = LR\mathbf{n} \cdot \mathbf{l}$$

Avoid bug: $I = LR \max(\mathbf{n} \cdot \mathbf{l}, 0)$

Ambient reflection

$$I = LR \max(\mathbf{n} \cdot \mathbf{l}, 0)$$

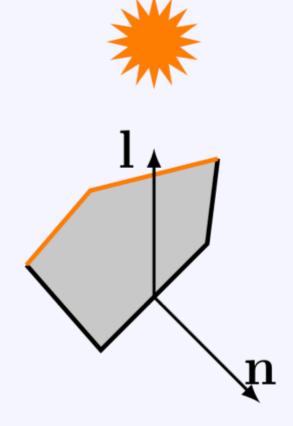
Surfaces facing away from the light will be totally **black**

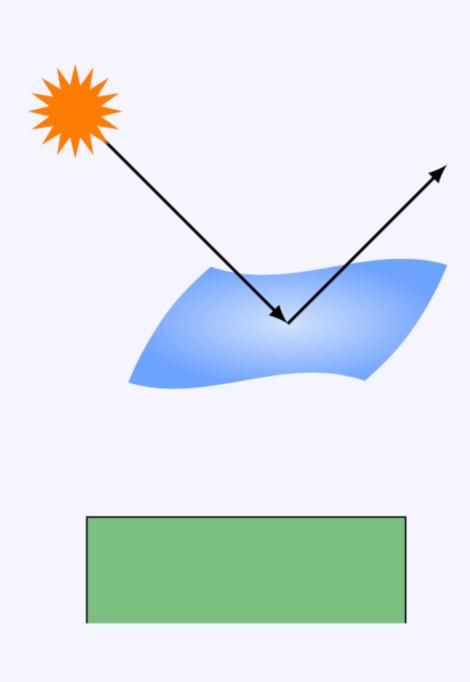


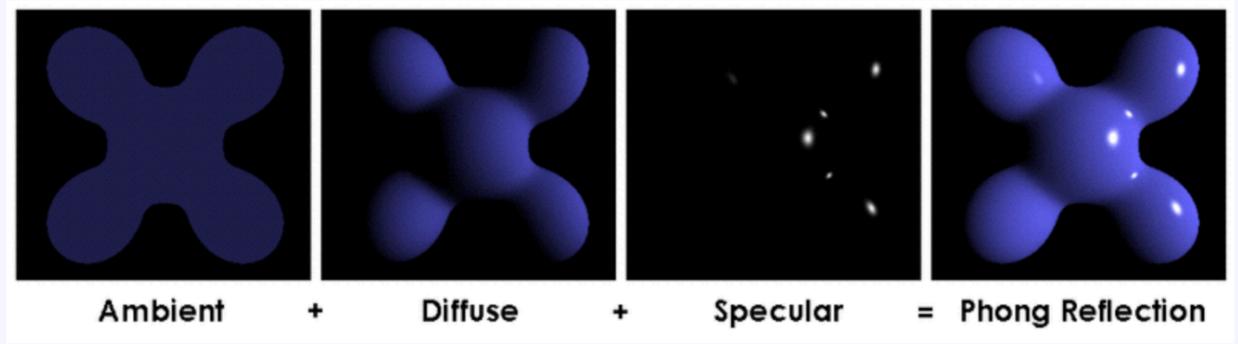
Ambient reflection

$$I = L_a R_a + L_d R_d \max(\mathbf{n} \cdot \mathbf{l}, 0)$$

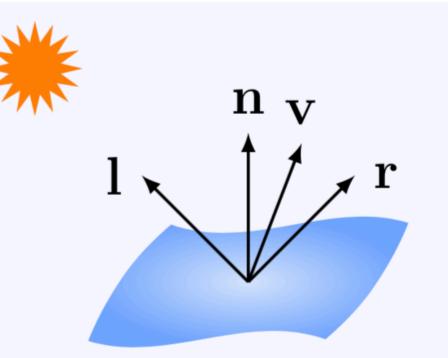
All surfaces get the same amount of ambient light

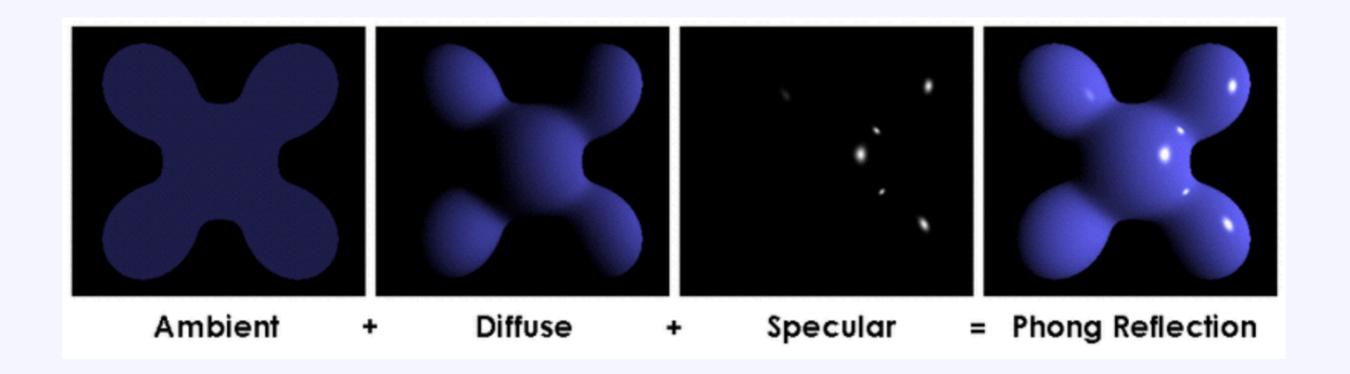






- Efficient
- Reasonably realistic
- 3 components
- 4 vectors

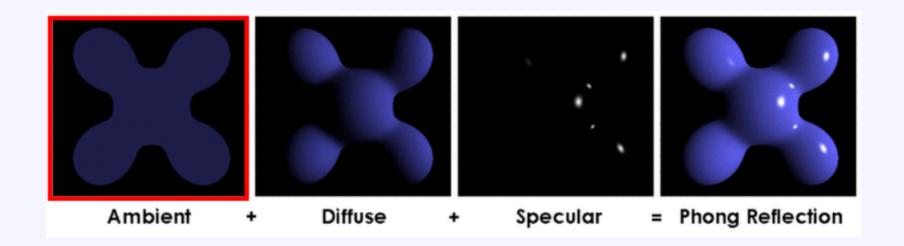




$$I = I_a + I_d + I_s$$

= $R_a L_a + R_d L_d \max(\mathbf{n} \cdot \mathbf{l}, 0) + R_s L_s \max(\cos \phi, 0)^{\alpha}$

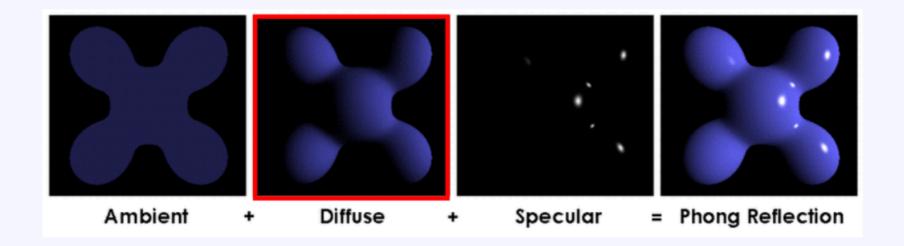
Ambient reflection

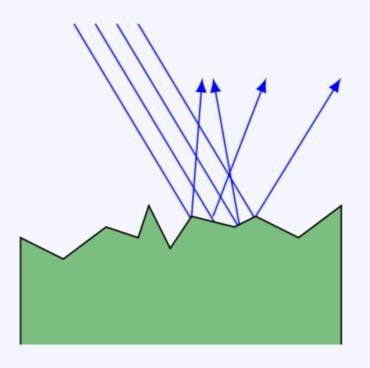


$$I_a = R_a L_a$$

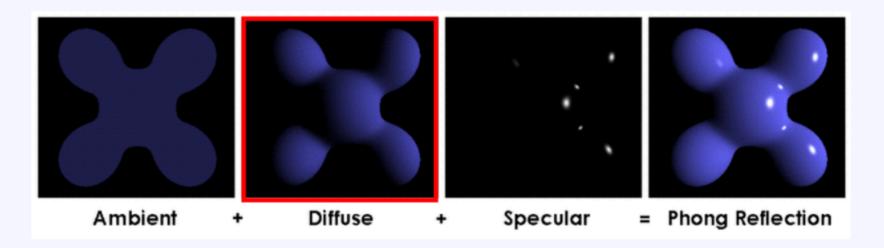
$$0 \le R_a \le 1$$

Diffuse reflection

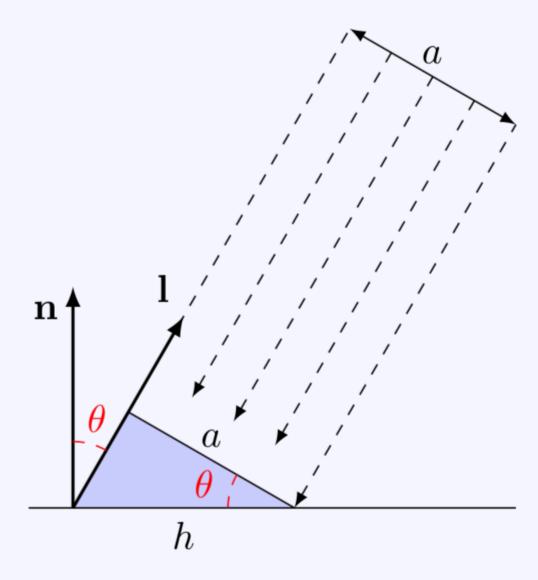




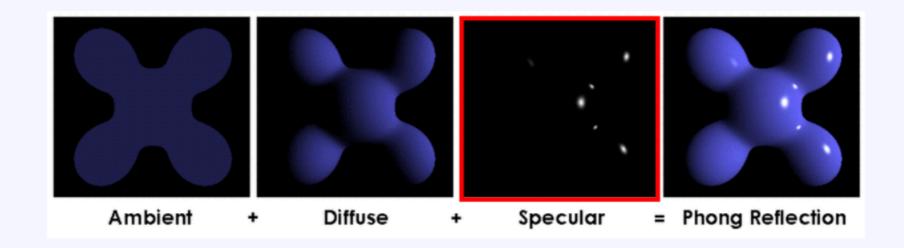
Diffuse reflection

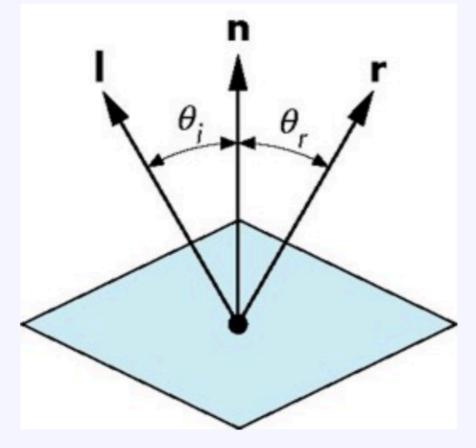


$$I_d = R_d L_d \max(\mathbf{n} \cdot \mathbf{l}, 0)$$



Specular reflection

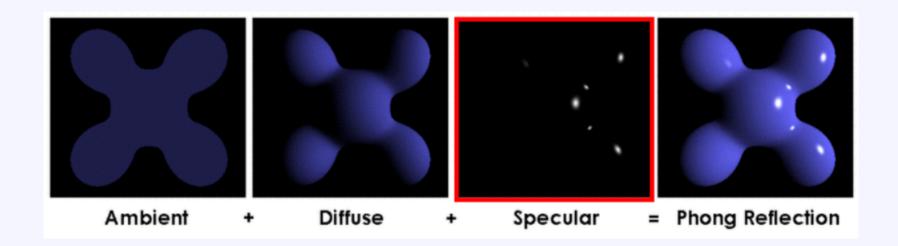


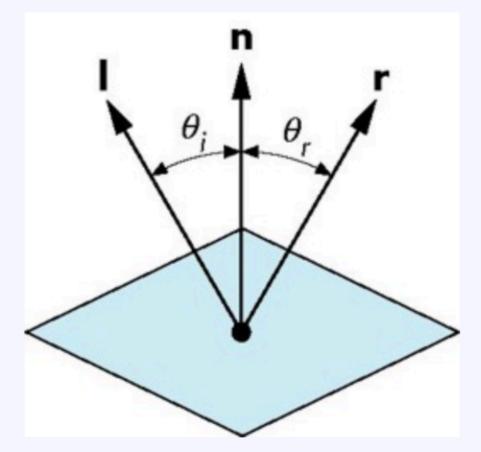


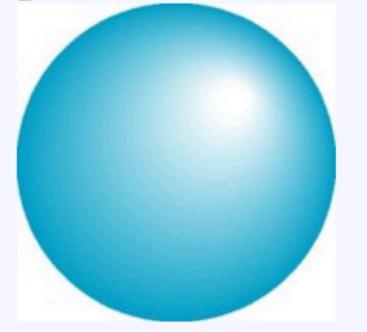
Ideal reflector $\theta_i = \theta_r$

r is the mirror reflection direction

Specular reflection

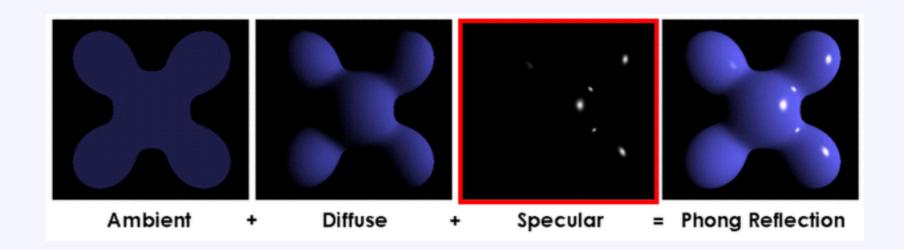


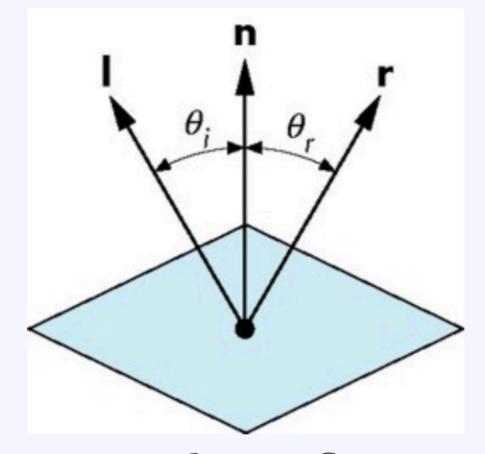




specular reflection is strongest in reflection direction

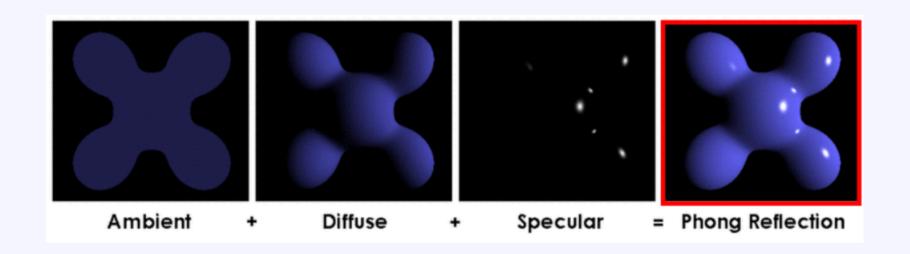
Specular reflection





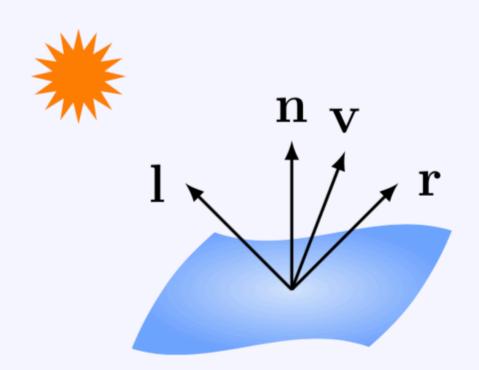
$$I_s = R_s L_s \max(\cos \phi, 0)^{\alpha}$$

specular reflection drops off with increasing ϕ



$$I = I_a + I_d + I_s$$

= $R_a L_a + R_d L_d \max(\mathbf{n} \cdot \mathbf{l}, 0) + R_s L_s \max(\mathbf{v} \cdot \mathbf{r}, 0)^{\alpha}$



Attribution

[1] Andrea Fisher Fine Pottery. jody-folwell-jar05big.jpg. https://www.eyesofthepot.com/santa-clara/jody_folwell.

Computing Normal Vectors

Plane Normals

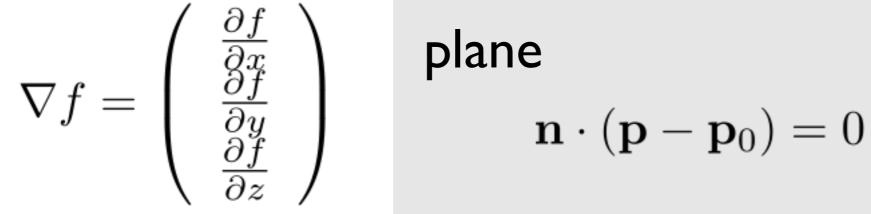
$$\mathbf{v} = (\mathbf{p}_2 - \mathbf{p}_0) \times (\mathbf{p}_1 - \mathbf{p}_0)$$
 $\mathbf{n} = \frac{\mathbf{v}}{||\mathbf{v}||}$
 \mathbf{p}_0
 \mathbf{p}_1

Implicit function normals

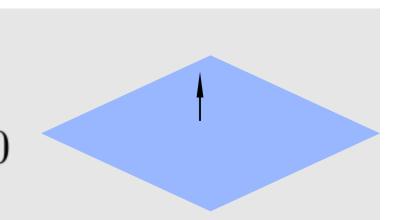
$$f(\mathbf{p}) = 0$$

$$\nabla f(\mathbf{p})$$

$$\mathbf{p} \cdot \mathbf{p} - r^2 = 0$$



$$\mathbf{n} \cdot (\mathbf{p} - \mathbf{p}_0) = 0$$



Parametric form

$$\mathbf{p}(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}$$

tangent vectors

 $\frac{\partial \mathbf{p}}{\partial u}$

 $\frac{\partial \mathbf{p}}{\partial v}$

normal

$$\frac{\frac{\partial \mathbf{p}}{\partial u} \times \frac{\partial \mathbf{p}}{\partial v}}{\left| \left| \frac{\partial \mathbf{p}}{\partial u} \times \frac{\partial \mathbf{p}}{\partial v} \right| \right|}$$

