CSI30 : Computer Graphics Curves

Tamar Shinar Computer Science & Engineering UC Riverside

Design considerations

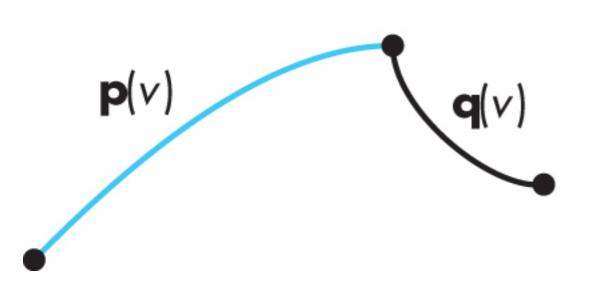
local control of shape

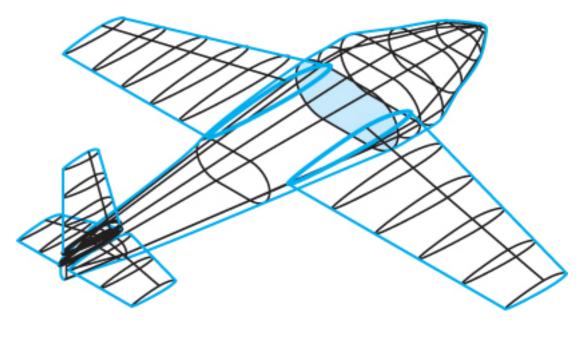
•design each segment independently

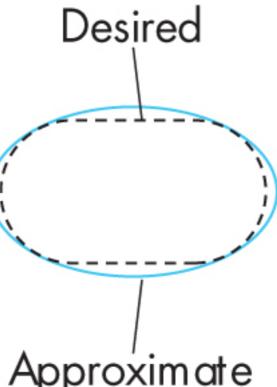
•smoothness and continuity

ability to evaluate derivativesstability

small change in input leads to small change in output
ease of rendering







Design considerations

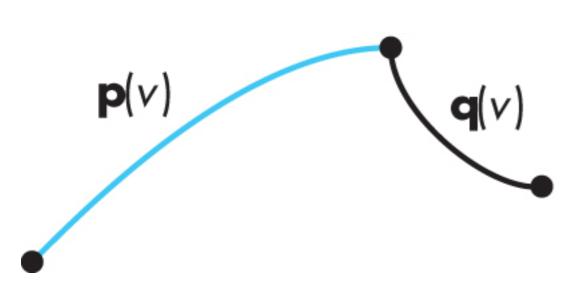
local control of shape

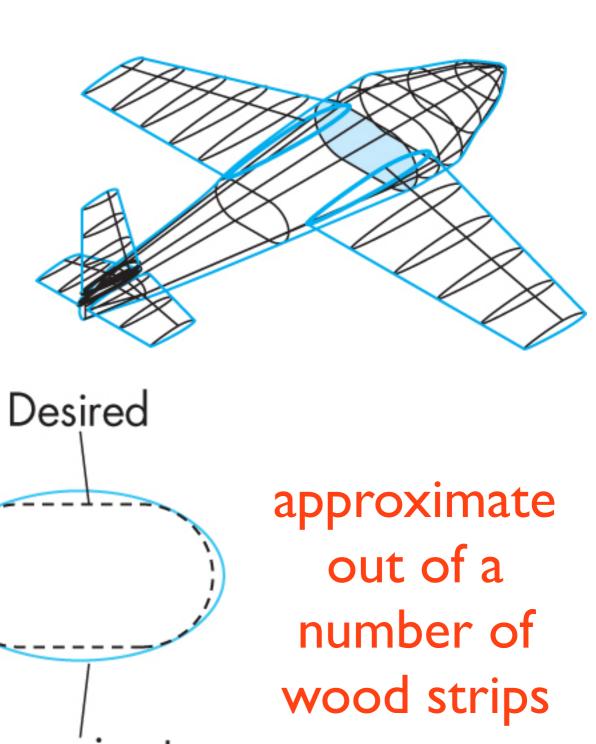
•design each segment independently

•smoothness and continuity

ability to evaluate derivativesstability

small change in input leads to small change in output
ease of rendering





Approximate

Design considerations

local control of shape

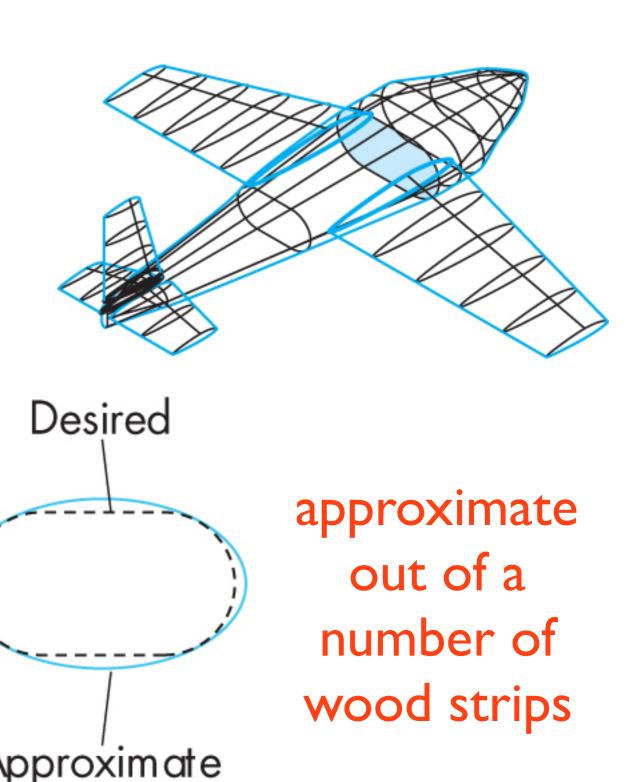
•design each segment independently

•smoothness and continuity

ability to evaluate derivativesstability

small change in input leads to small change in output
ease of rendering

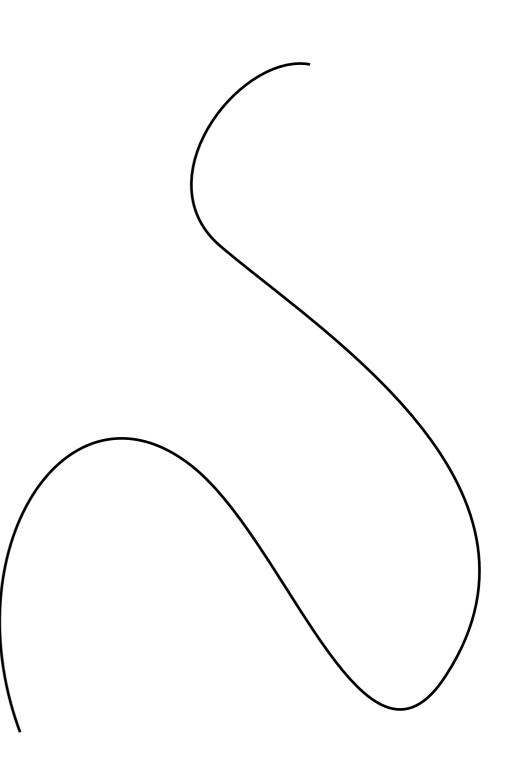
 $\mathbf{p}(v)$ $\mathbf{q}(\mathbf{v})$ join points or knots

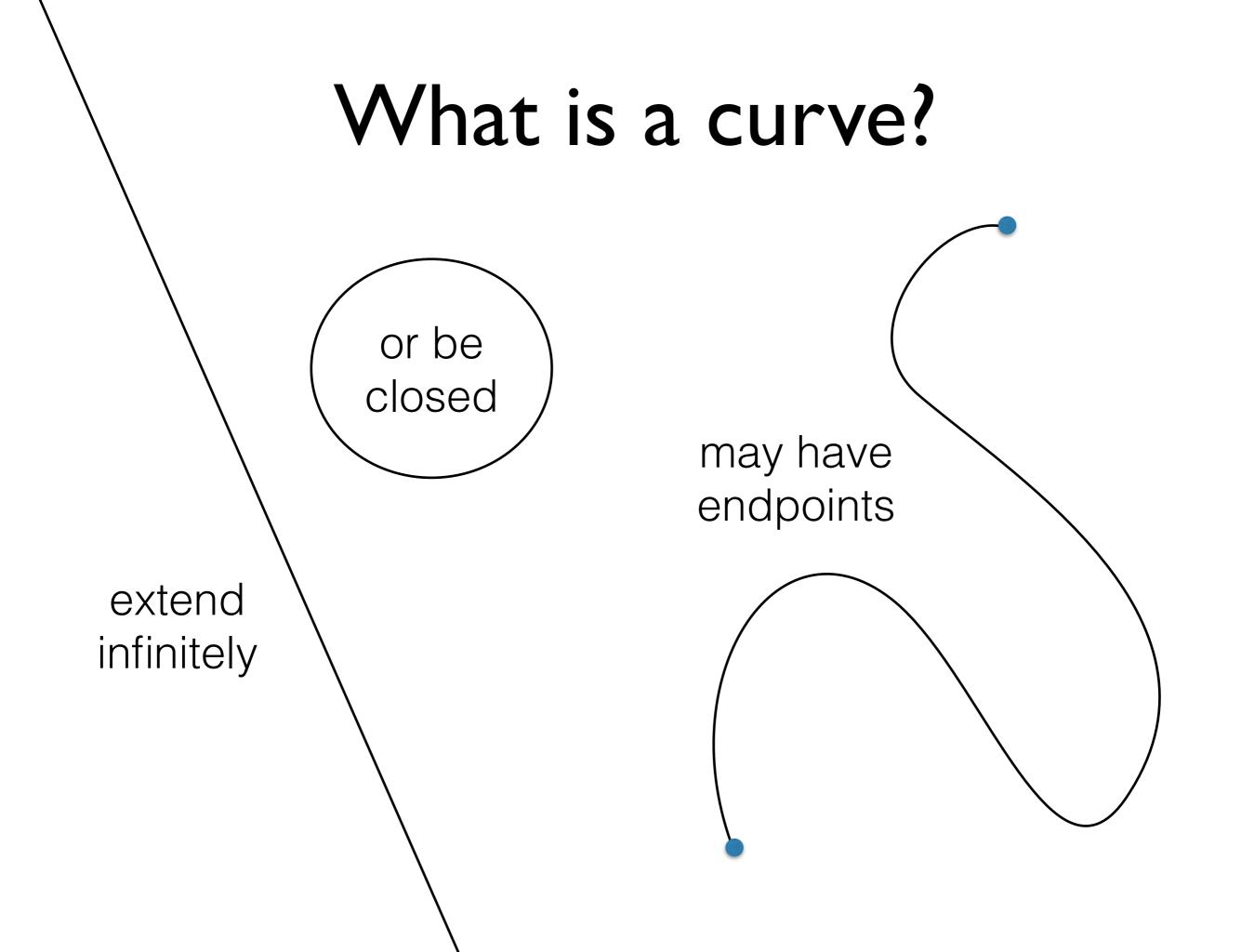


What is a curve?

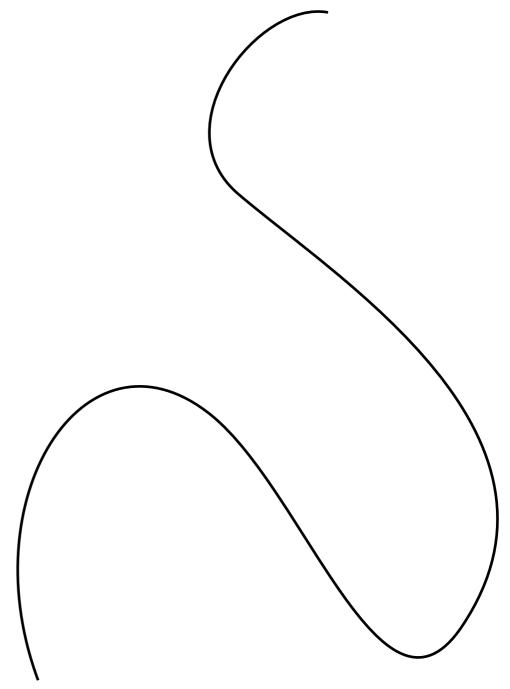
intuitive idea: draw with a pen set of points the pen traces

may be 2D, like on paper or 3D, *space curve*





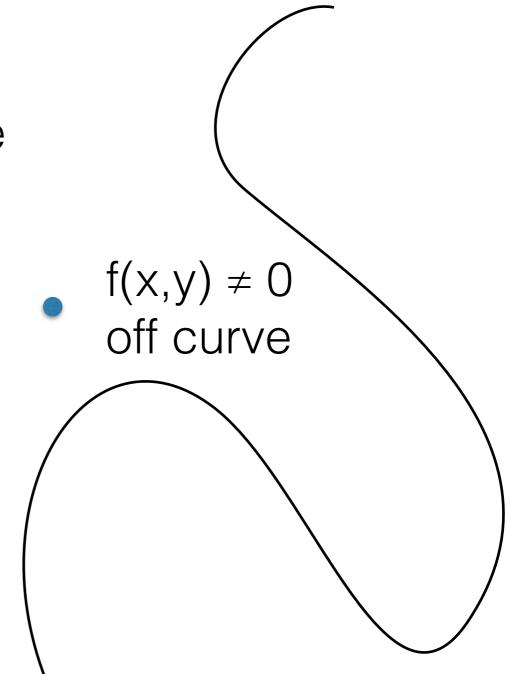
Implicit (2D) f(x,y) = 0test if (x,y) is on the curve



Implicit (2D) f(x,y) = 0test if (x,y) is on the curve

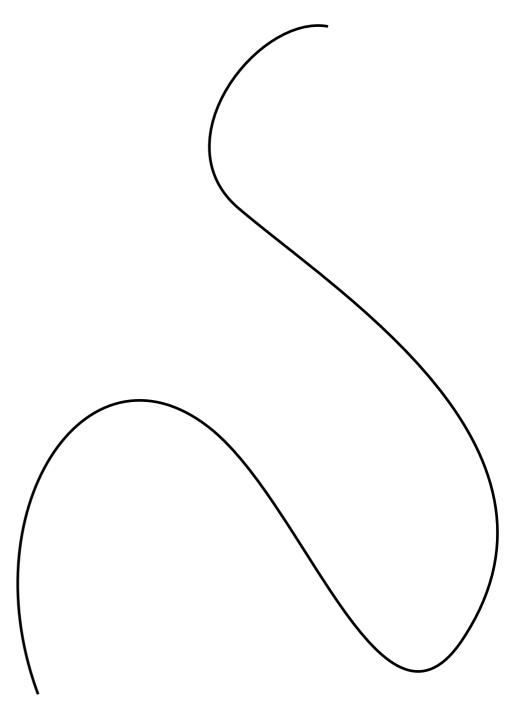
f(x,y) = 0
on curve

Implicit (2D) f(x,y) = 0test if (x,y) is on the curve



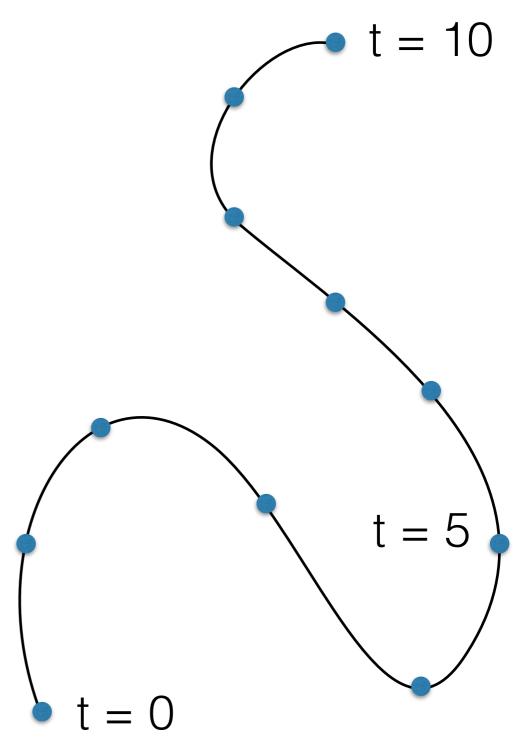
Implicit (2D) f(x,y) = 0test if (x,y) is on the curve

Parametric (2D)(x,y) = f(t) (3D)(x,y,z) = f(t)map free parameter t to points on the curve



Implicit (2D) f(x,y) = 0test if (x,y) is on the curve

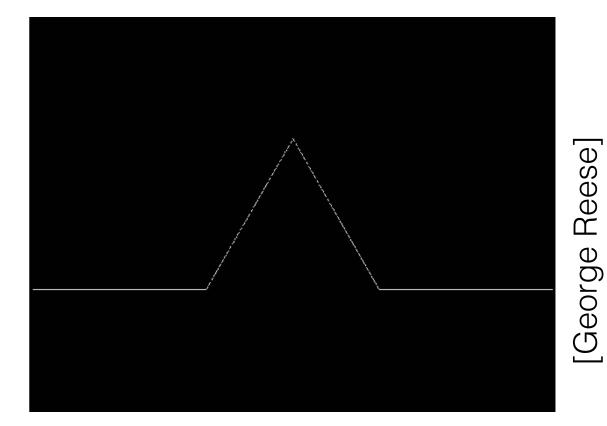
Parametric (2D)(x,y) = f(t) (3D)(x,y,z) = f(t)map free parameter t to points on the curve



Implicit (2D) f(x,y) = 0test if (x,y) is on the curve

Parametric (2D) (x,y) = f(t) (3D) (x,y,z) = f(t)map free parameter t to points on the curve

Procedural e.g., fractals, subdivision schemes

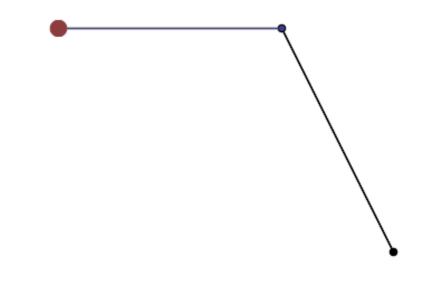


Fractal: Koch Curve

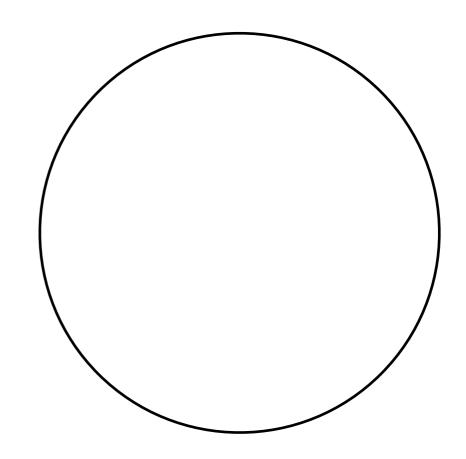
Implicit (2D) f(x,y) = 0test if (x,y) is on the curve

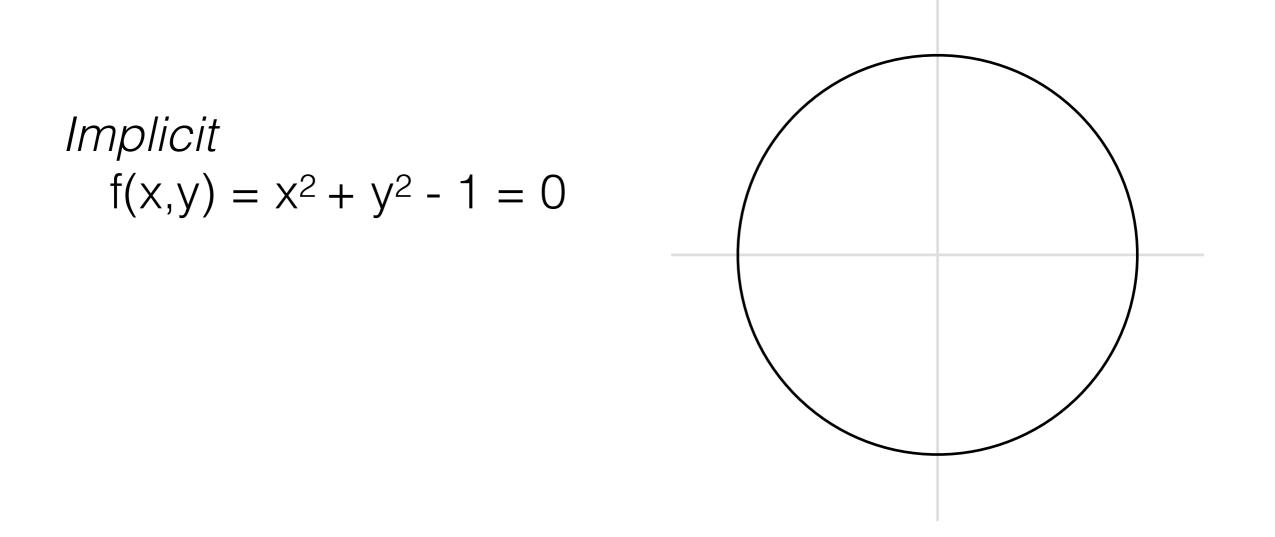
Parametric (2D)(x,y) = f(t) (3D)(x,y,z) = f(t)map free parameter t to points on the curve

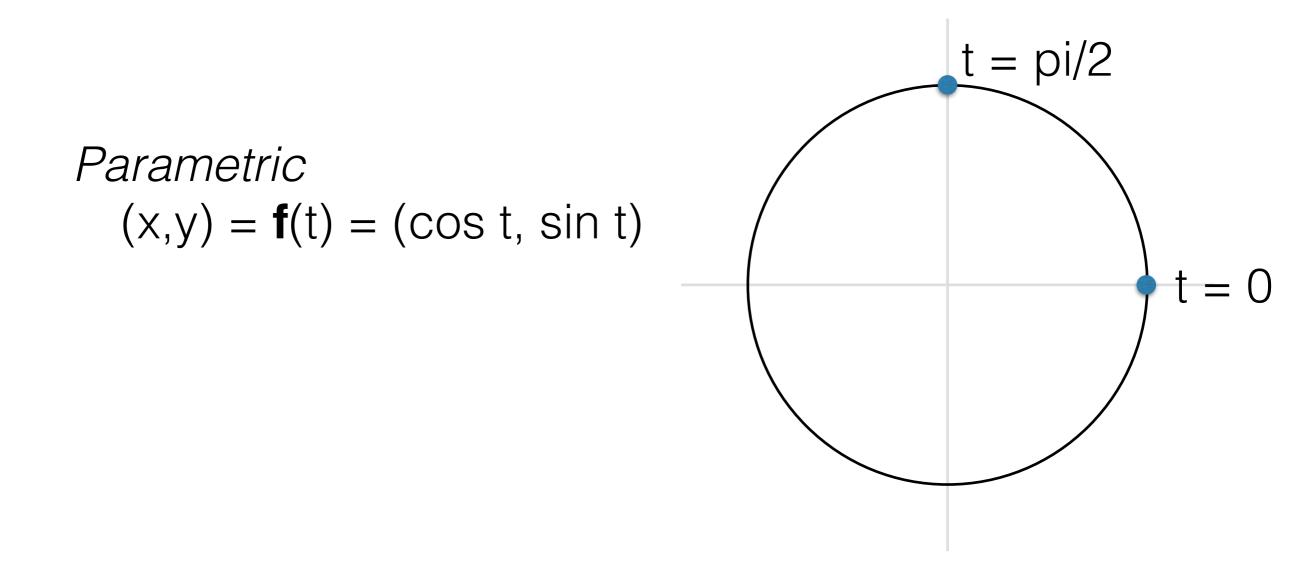
Procedural e.g., fractals, subdivision schemes

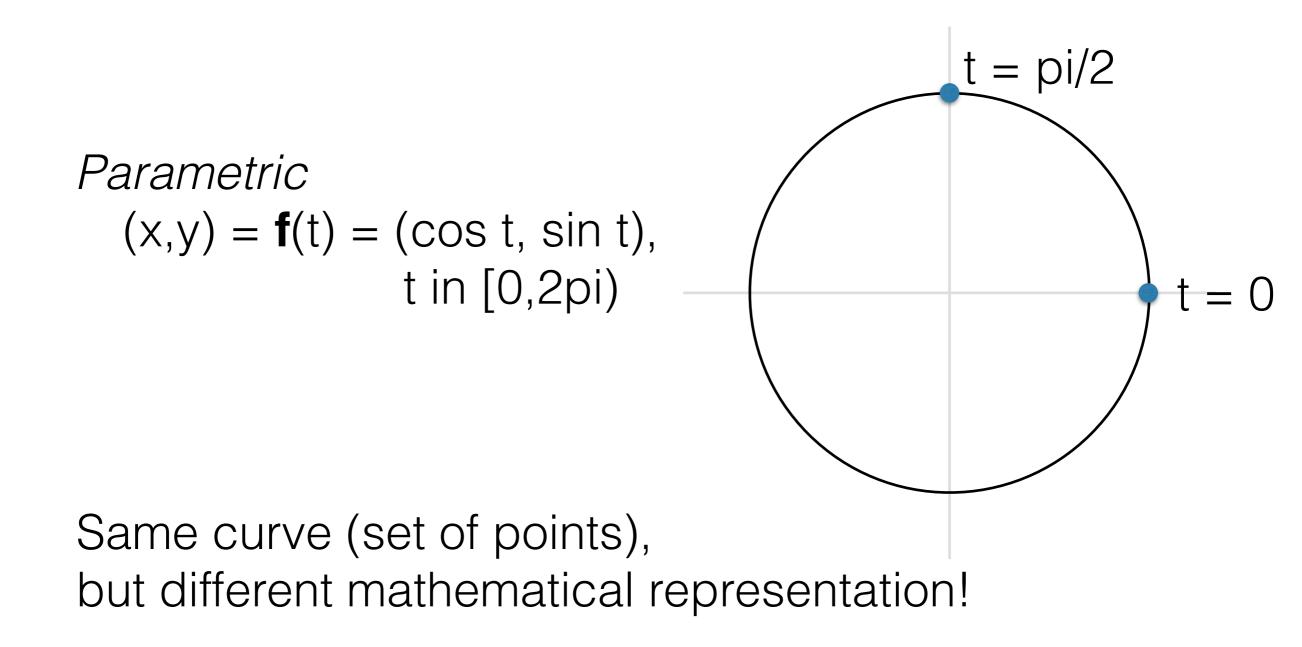


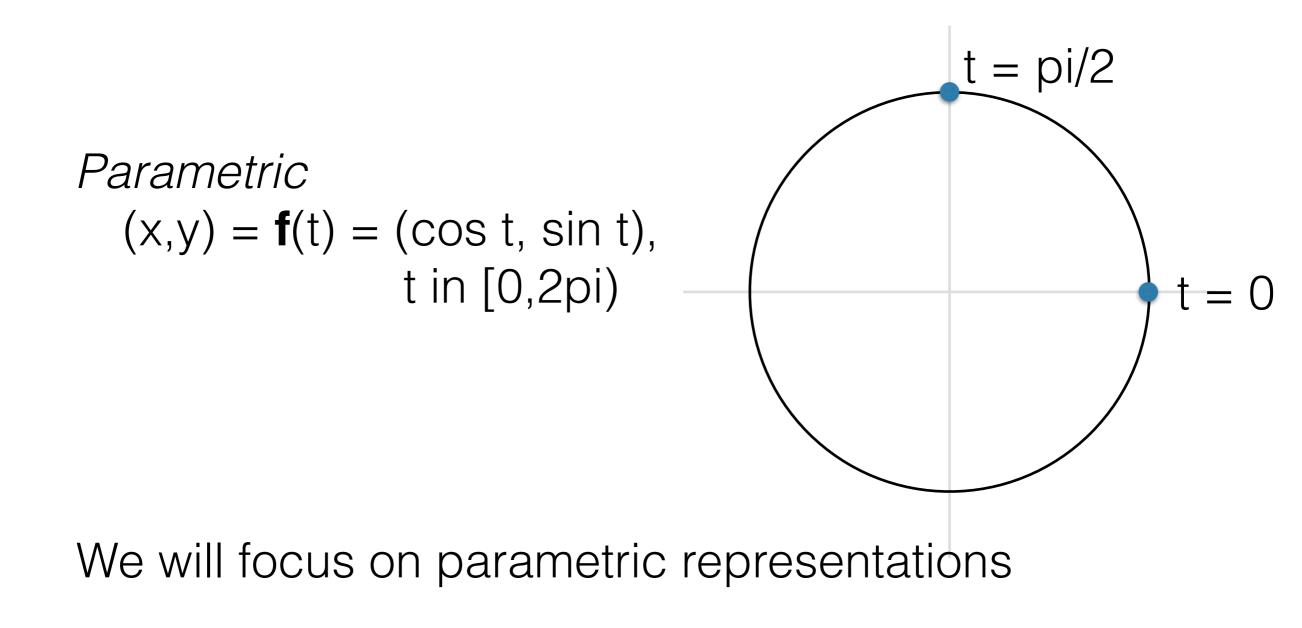
Bezier Curve

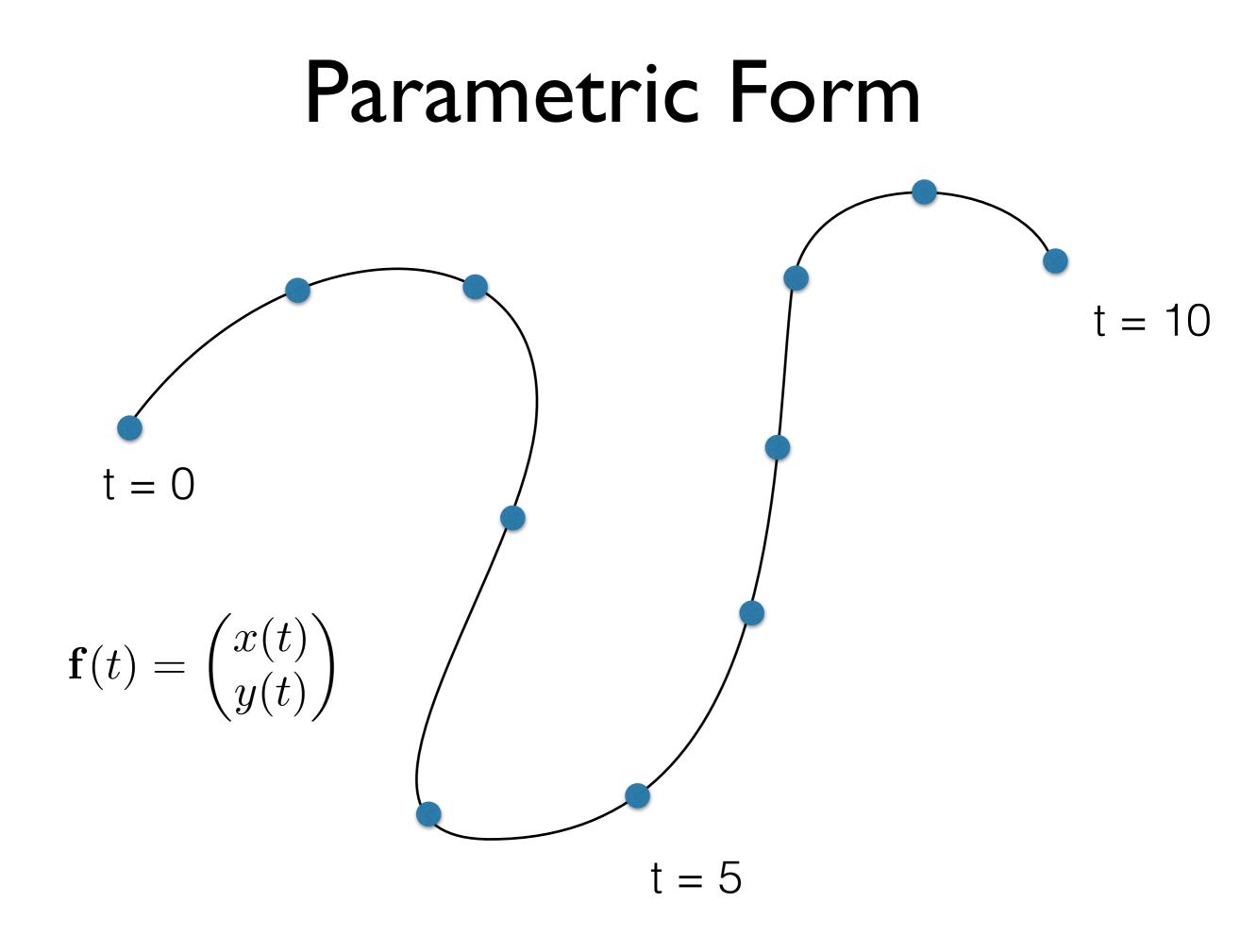


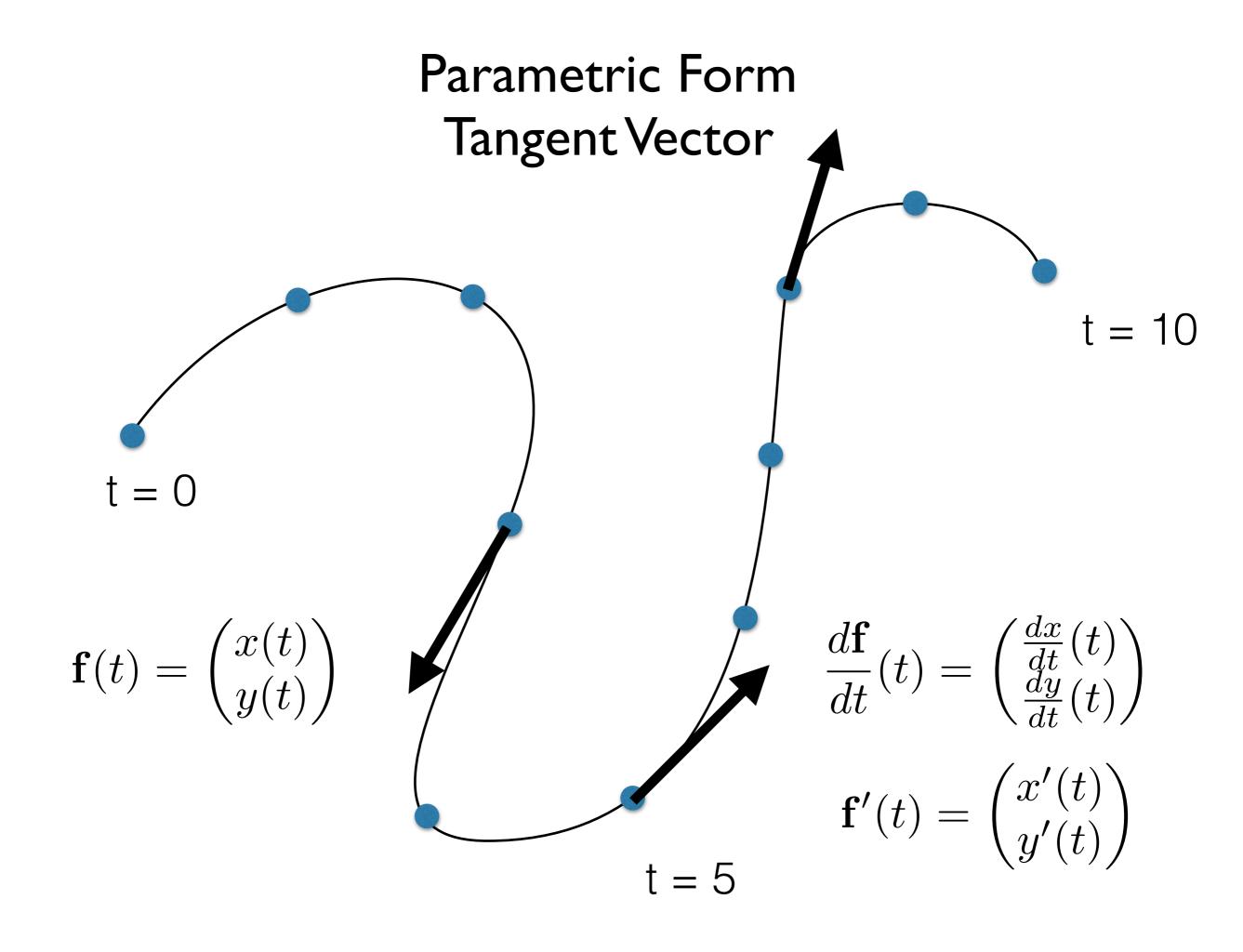


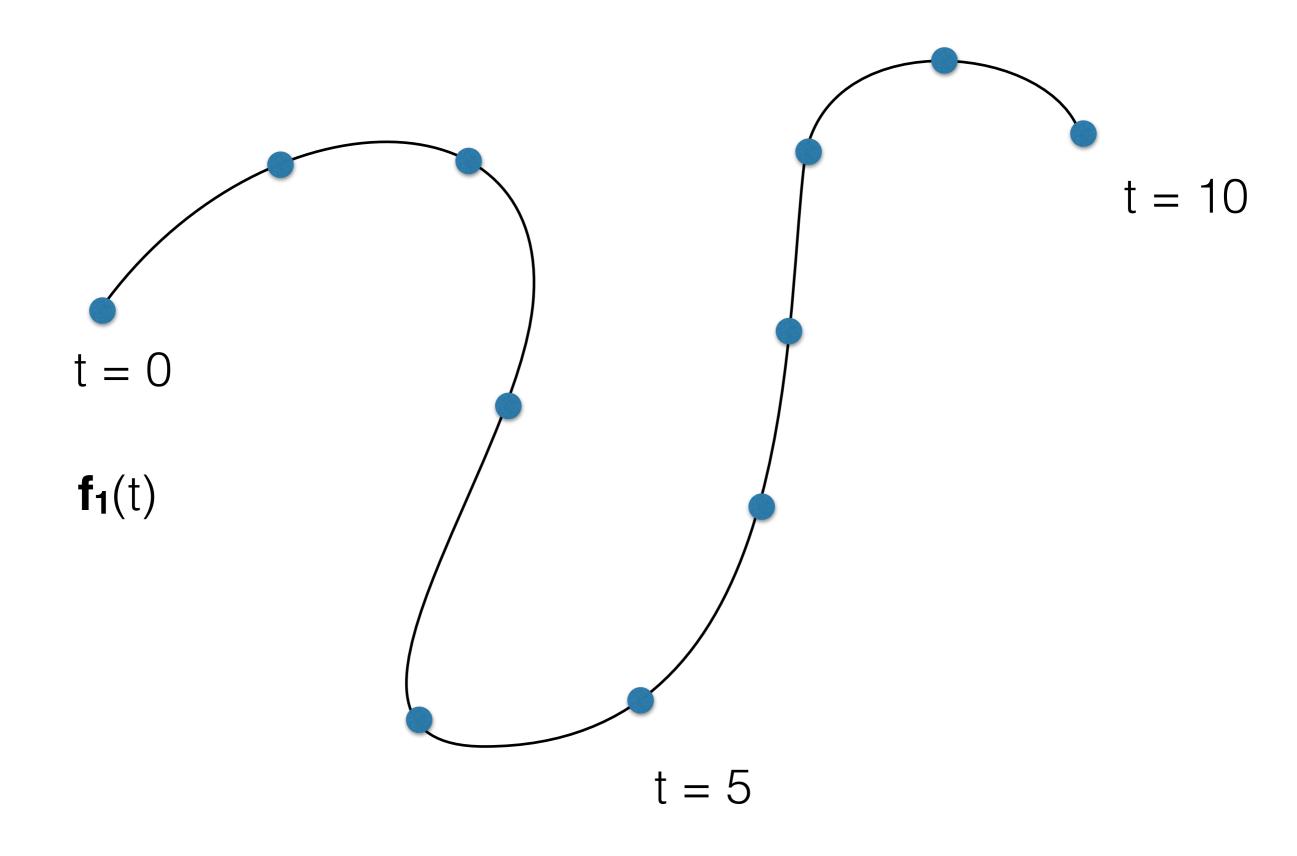


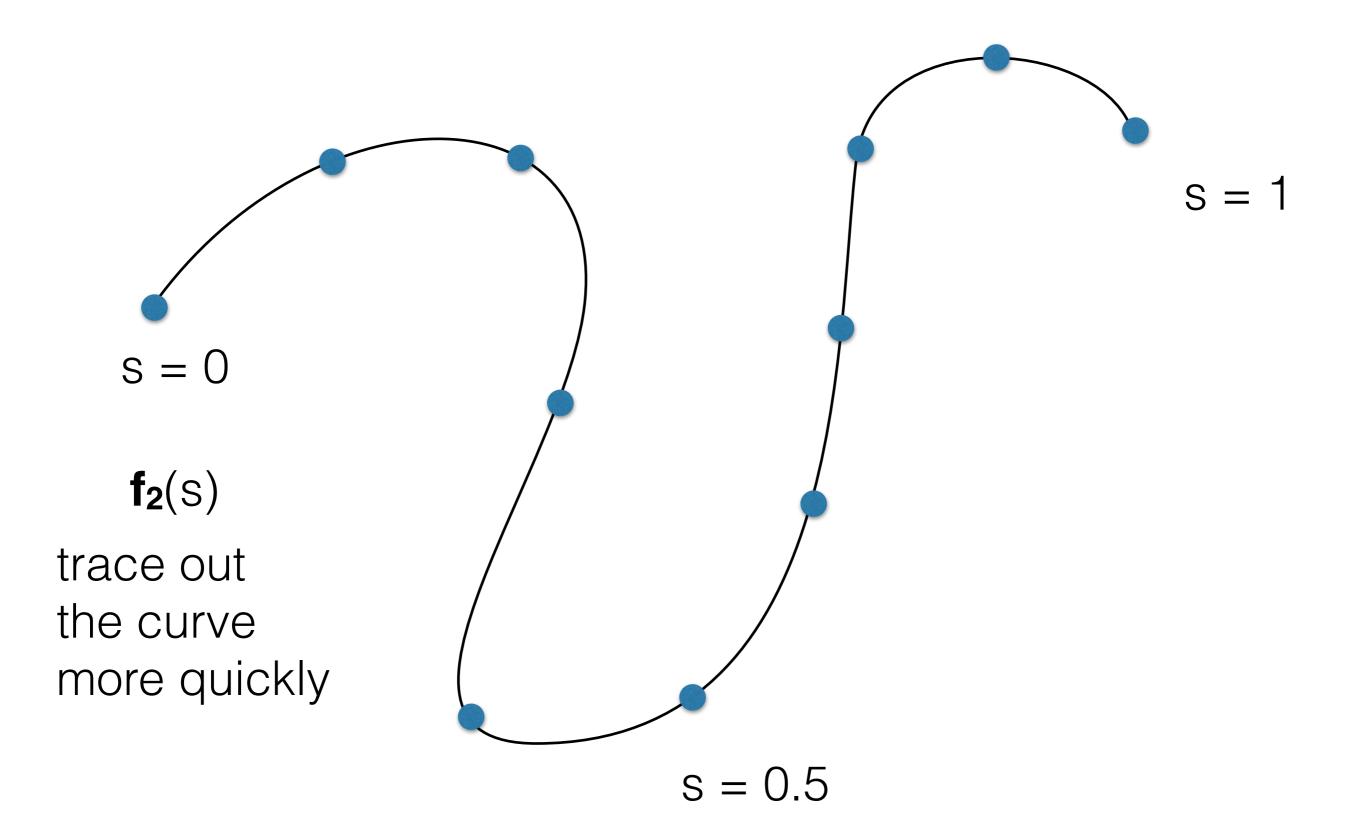


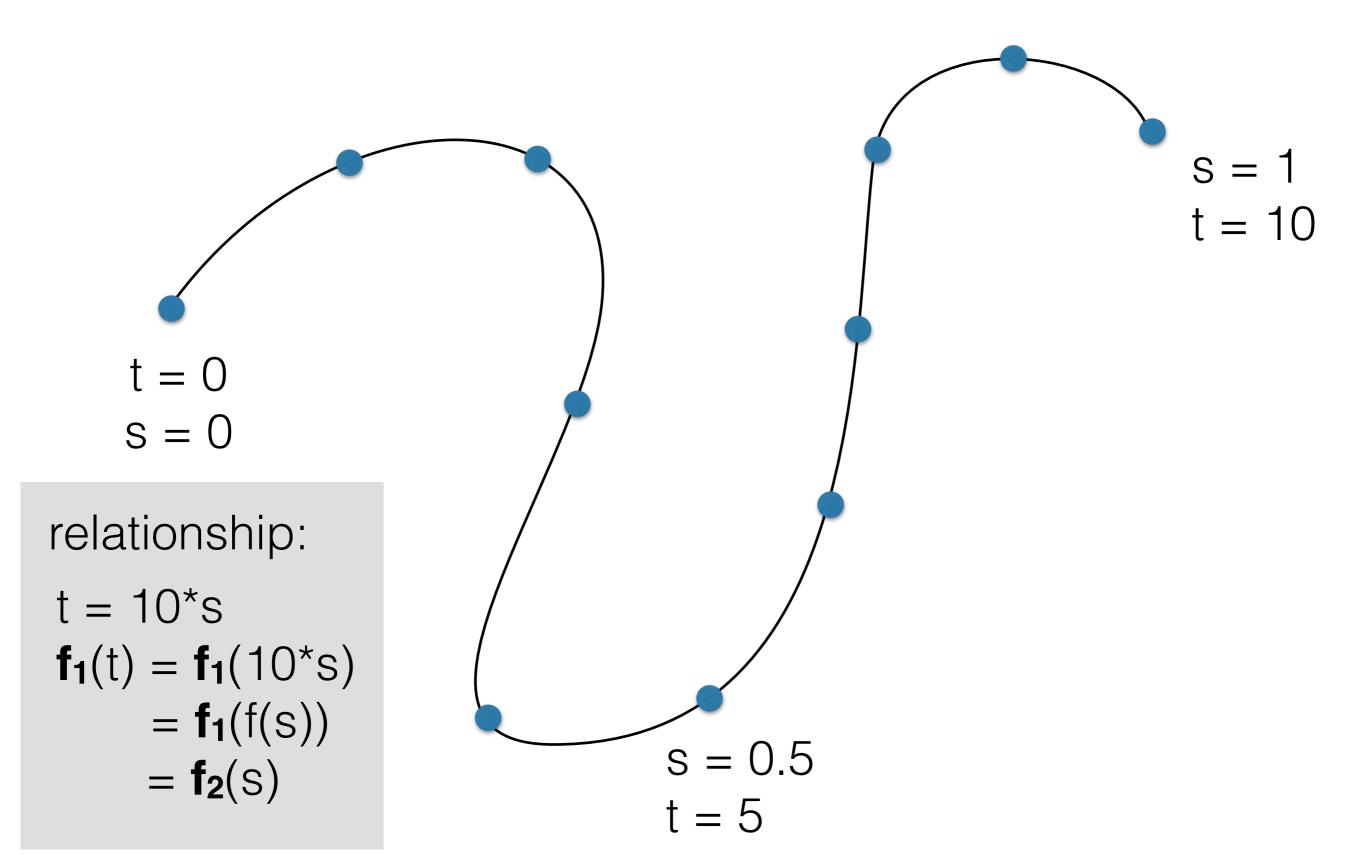


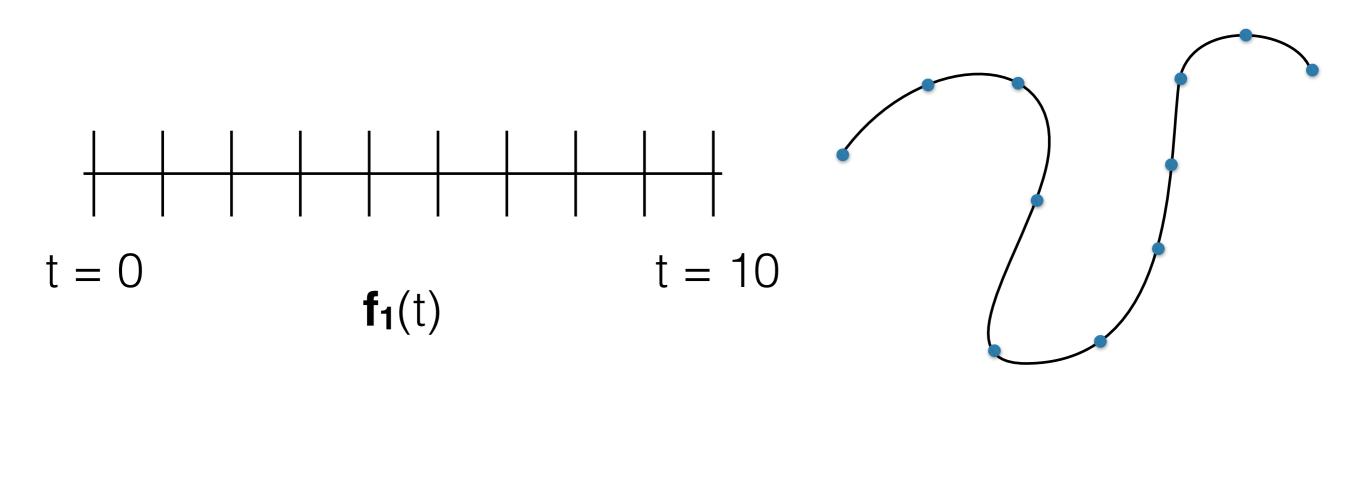


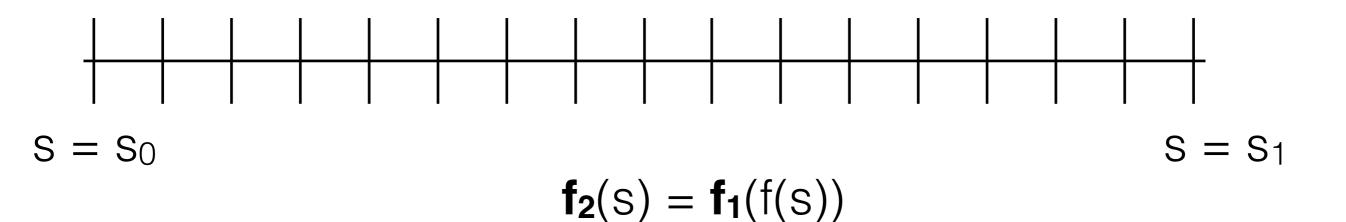


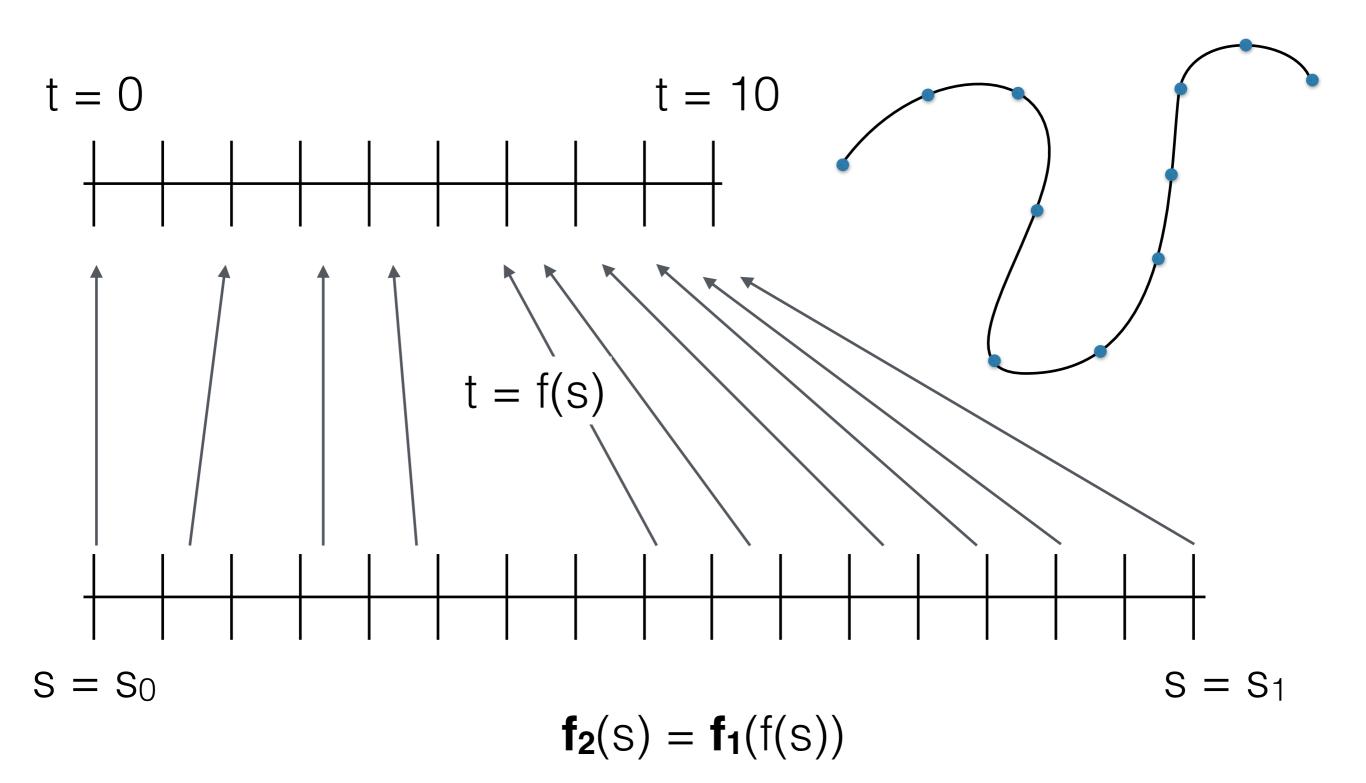


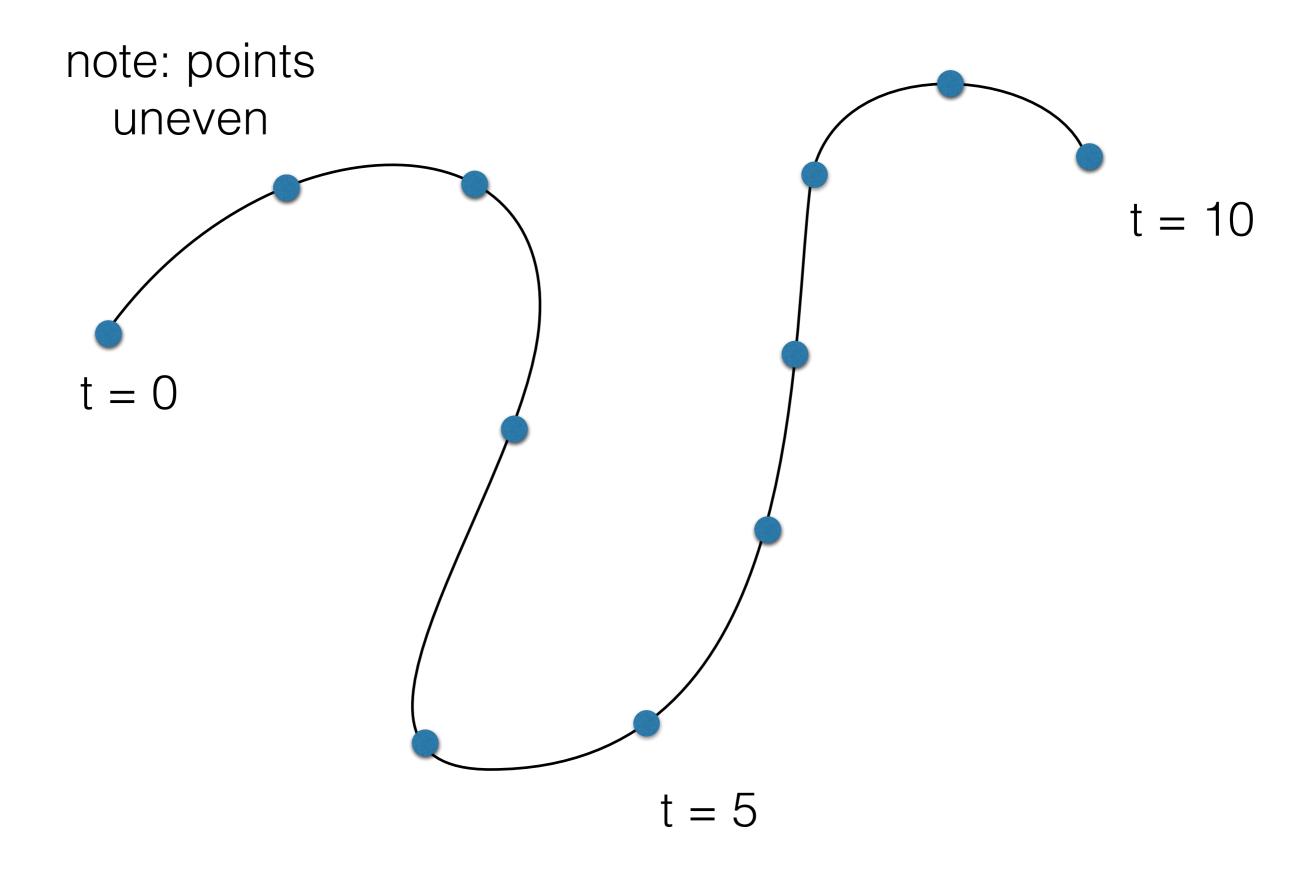


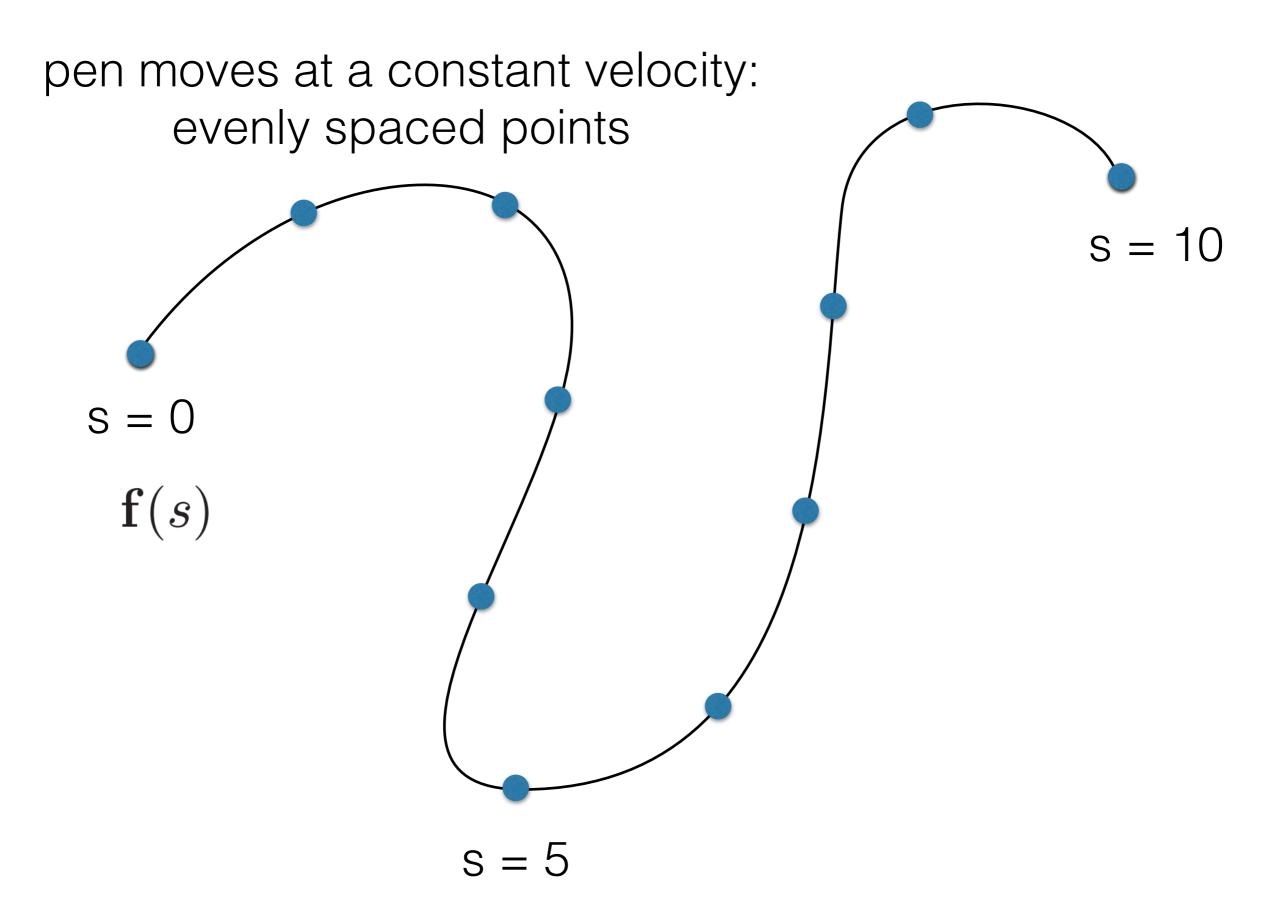


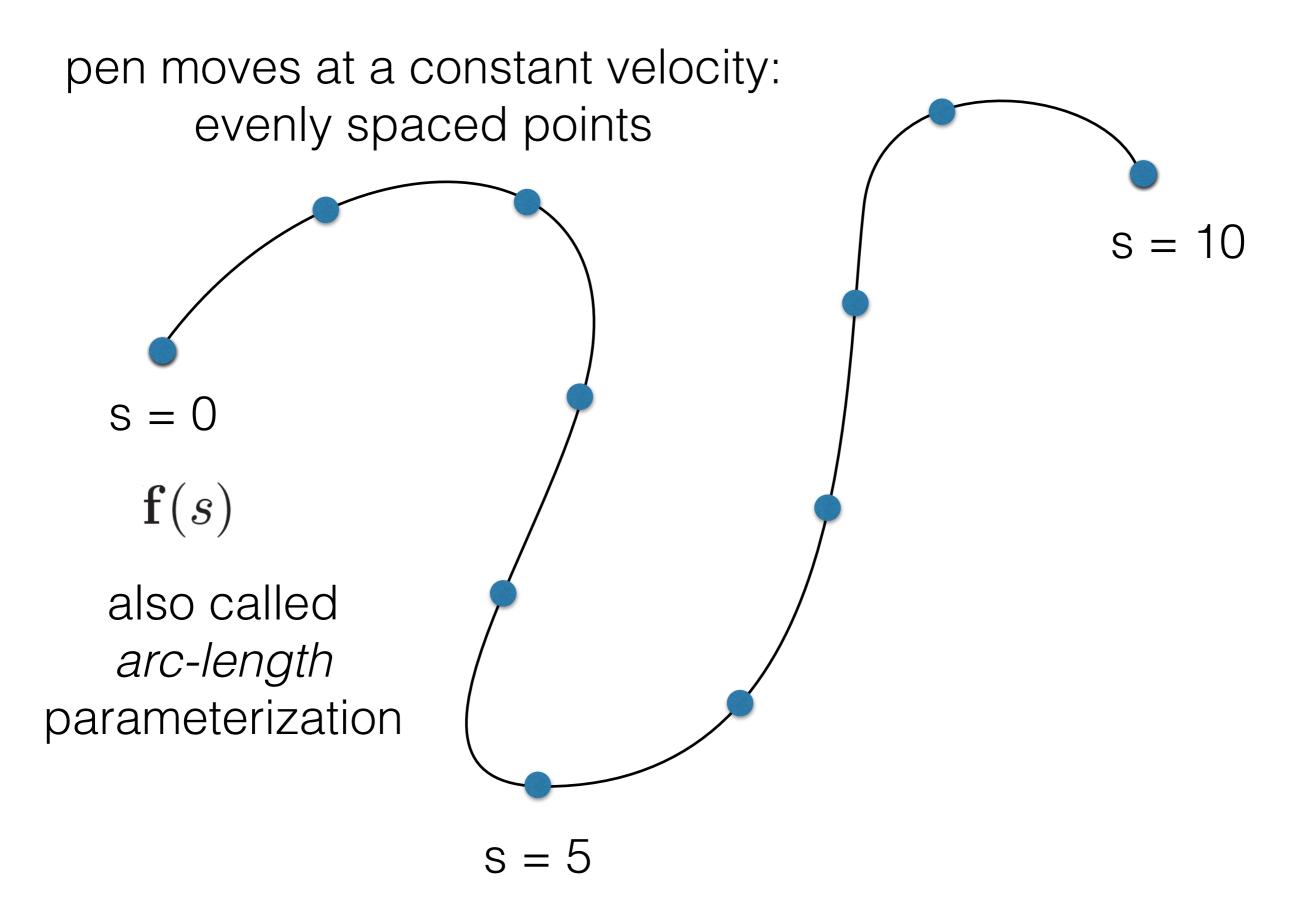


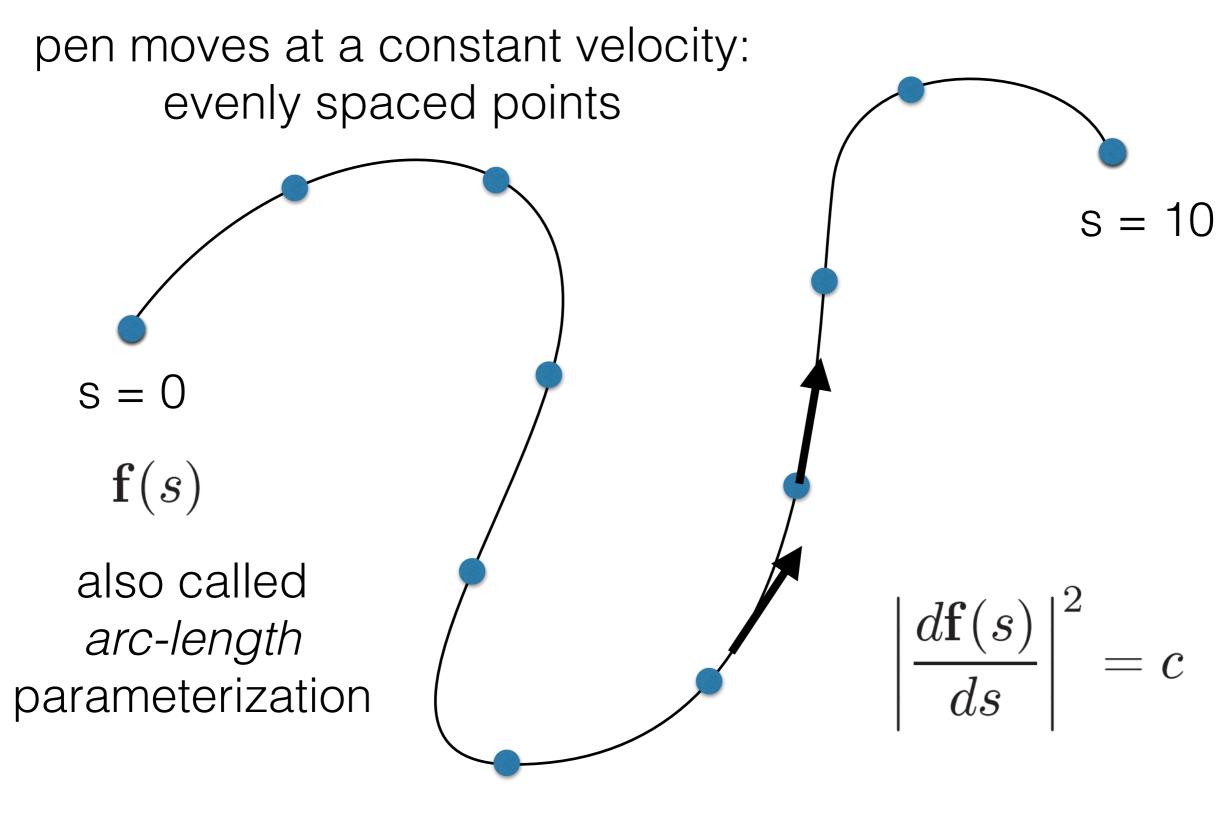








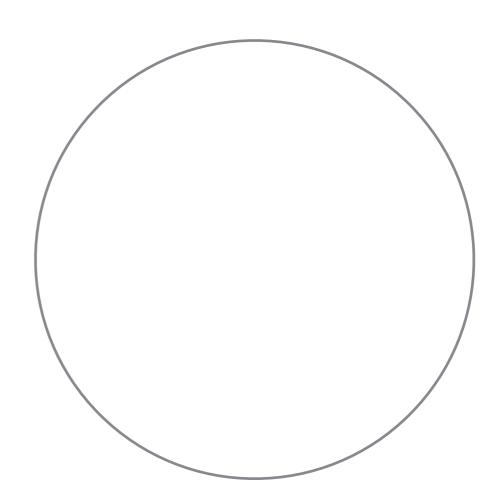


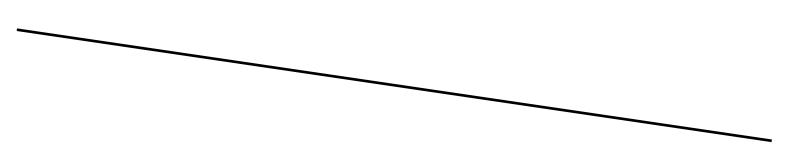


s = 5

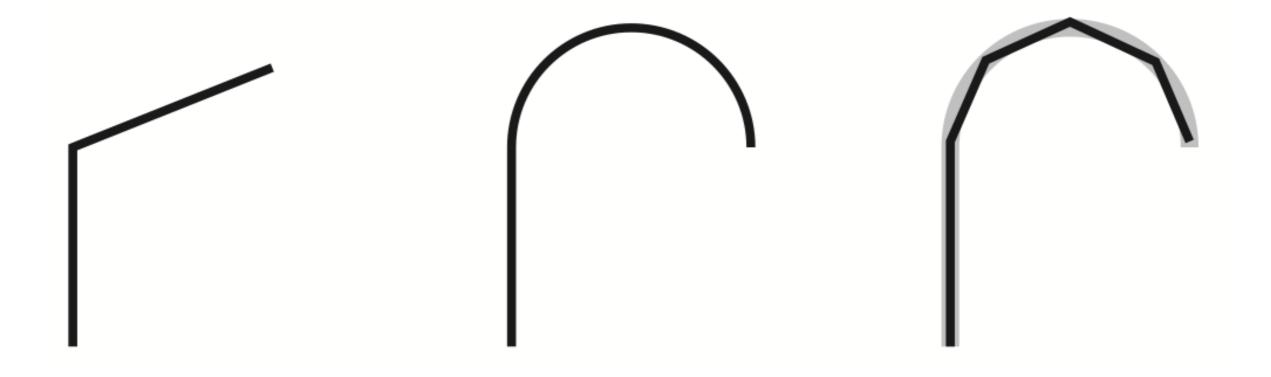
sometimes easy to find a parametric representation

e.g., circle, line segment

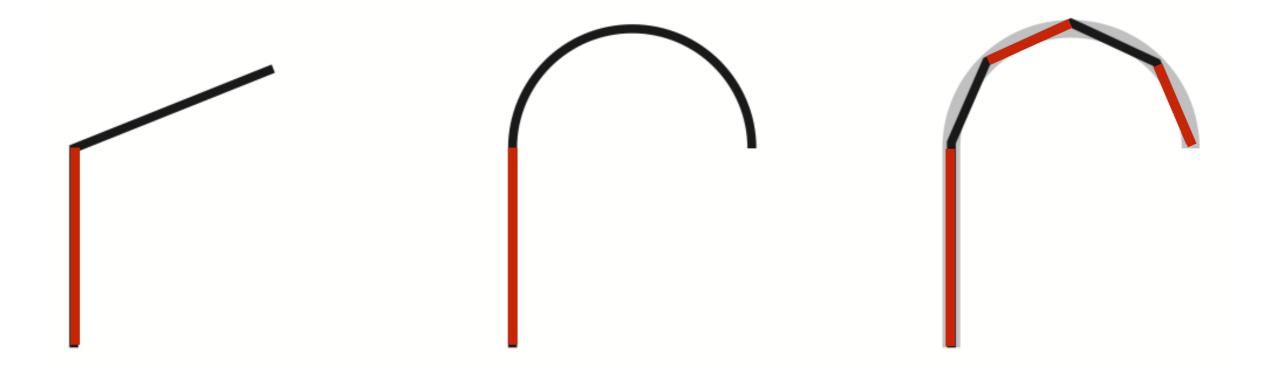




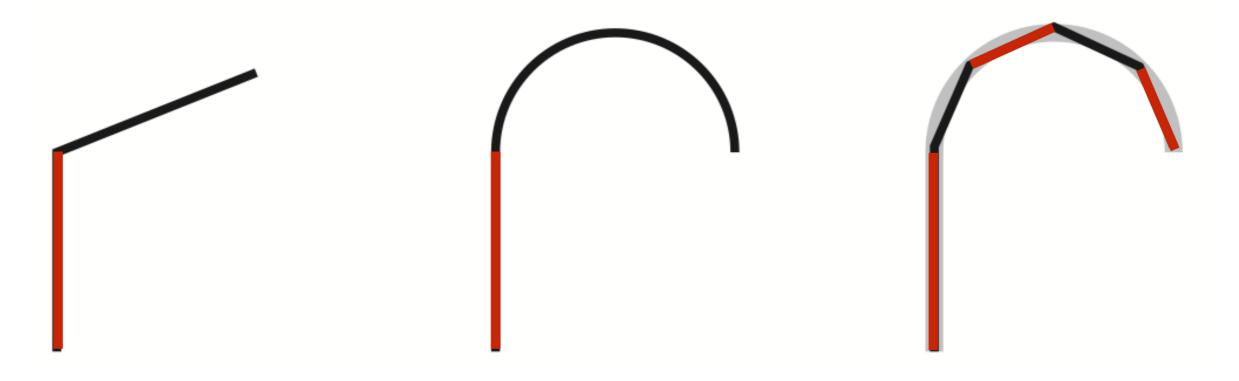
in other cases, not obvious



strategy: break into simpler pieces



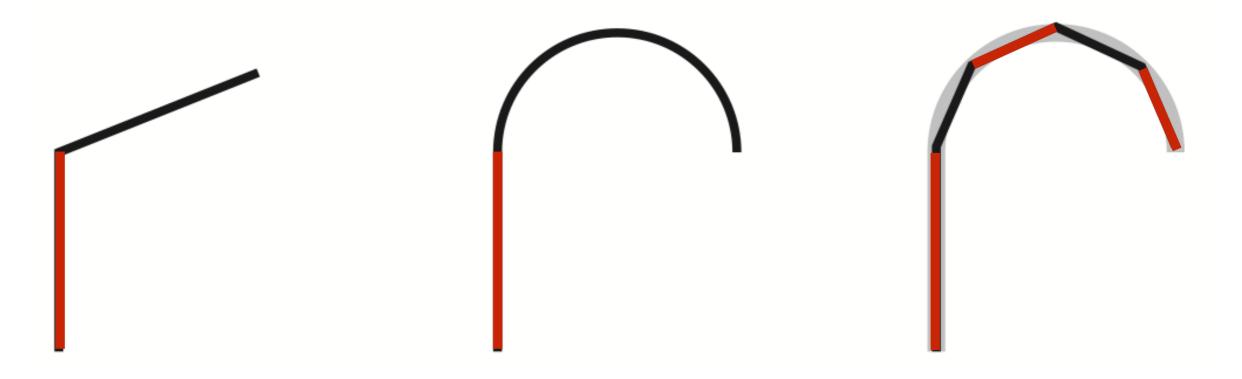
strategy: break into simpler pieces



switch between functions that represent pieces:

$$\mathbf{f}(u) = \begin{cases} \mathbf{f}_1(2u) & u \le 0.5 \\ \mathbf{f}_2(2u-1) & u > 0.5 \end{cases}$$

strategy: break into simpler pieces



switch between functions that represent pieces:

$$\mathbf{f}(u) = \begin{cases} \mathbf{f}_1(2u) & u \leq 0.5 \\ \mathbf{f}_2(2u-1) & u > 0.5 \end{cases} \quad \text{map the inputs to} \\ \mathbf{f}_1 \text{ and } \mathbf{f}_2 \\ \text{to be from 0 to 1} \end{cases}$$

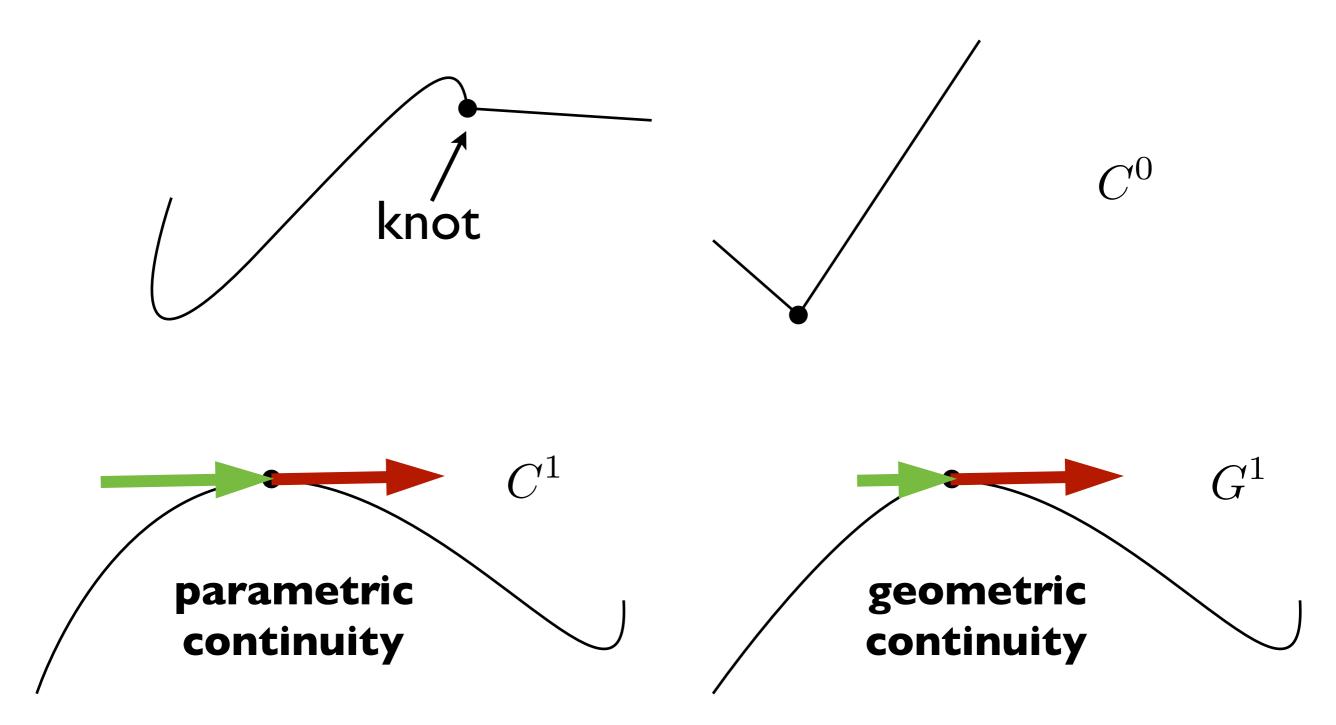
Curve Properties

Local properties: continuity position direction curvature

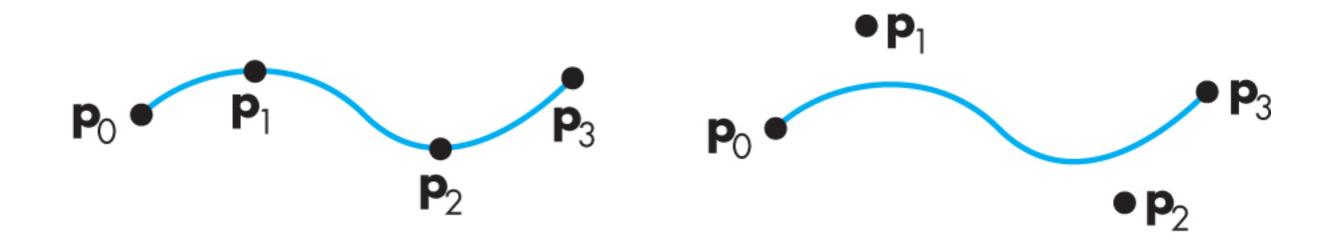
Global properties (examples): closed curve curve crosses itself

Interpolating vs. non-interpolating

Continuity: stitching curve segments together



Interpolating vs. Approximating Curves



Interpolating

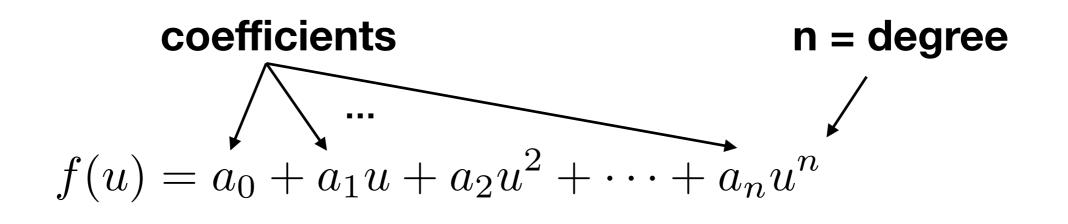
Approximating (non-interpolating)

Finding a Parametric Representation

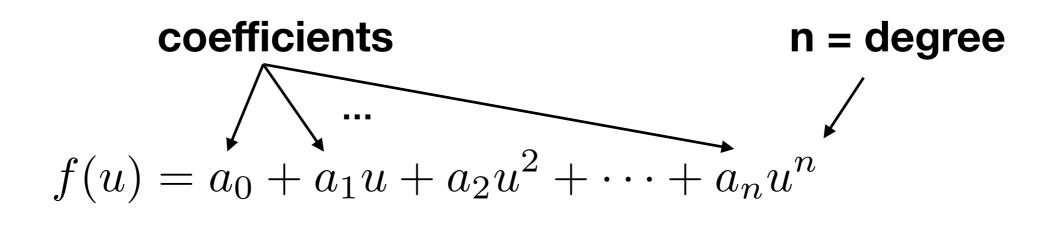
Polynomial Pieces

 $f(u) = a_0 + a_1u + a_2u^2 + \dots + a_nu^n$

Polynomial Pieces



Polynomial Pieces



"canonical form" (monomial basis)

• "canonical form" (monomial basis)

$$\mathbf{f}(u) = \mathbf{a}_0 + \mathbf{a}_1 u + \mathbf{a}_2 u^2 + \mathbf{a}_3 u^3$$

• "geometric form" (blending functions)

$$\mathbf{f}(u) = b_0(u)\mathbf{p}_0 + b_1(u)\mathbf{p}_1 + b_2(u)\mathbf{p}_2 + b_3(u)\mathbf{p}_3$$

$$f(u) = a_0 + a_1u + a_2u^2 + a_3u^3$$

$$\mathbf{u} = \begin{pmatrix} 1 \\ u \\ u^2 \\ u^3 \end{pmatrix} \qquad \mathbf{a} = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

$$f(u) = \mathbf{u} \cdot \mathbf{a} = \mathbf{u}^T \mathbf{a}$$

$$C\mathbf{a} = \mathbf{p} \qquad \mathbf{p} = B\mathbf{p} \qquad \mathbf{p} = \begin{pmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{pmatrix}$$

$$f(u) = \mathbf{u}^T \mathbf{a} = \mathbf{u}^T (B\mathbf{p})$$

= $(\mathbf{u}^T B)\mathbf{p}$ $\mathbf{b}(u) = \begin{pmatrix} b_0(u) \\ b_1(u) \\ b_2(u) \\ b_3(u) \end{pmatrix}$

$$C\mathbf{a} = \mathbf{p}$$

$$\mathbf{a} = C^{-1}\mathbf{p} = B\mathbf{p}$$

$$\mathbf{p} = \begin{pmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{pmatrix}$$

 (m_{n})

$$f(u) = \mathbf{u}^T \mathbf{a} = \mathbf{u}^T (B\mathbf{p})$$

$$= (\mathbf{u}^T B)\mathbf{p}$$

$$= \mathbf{b}(u)^T \mathbf{p}$$

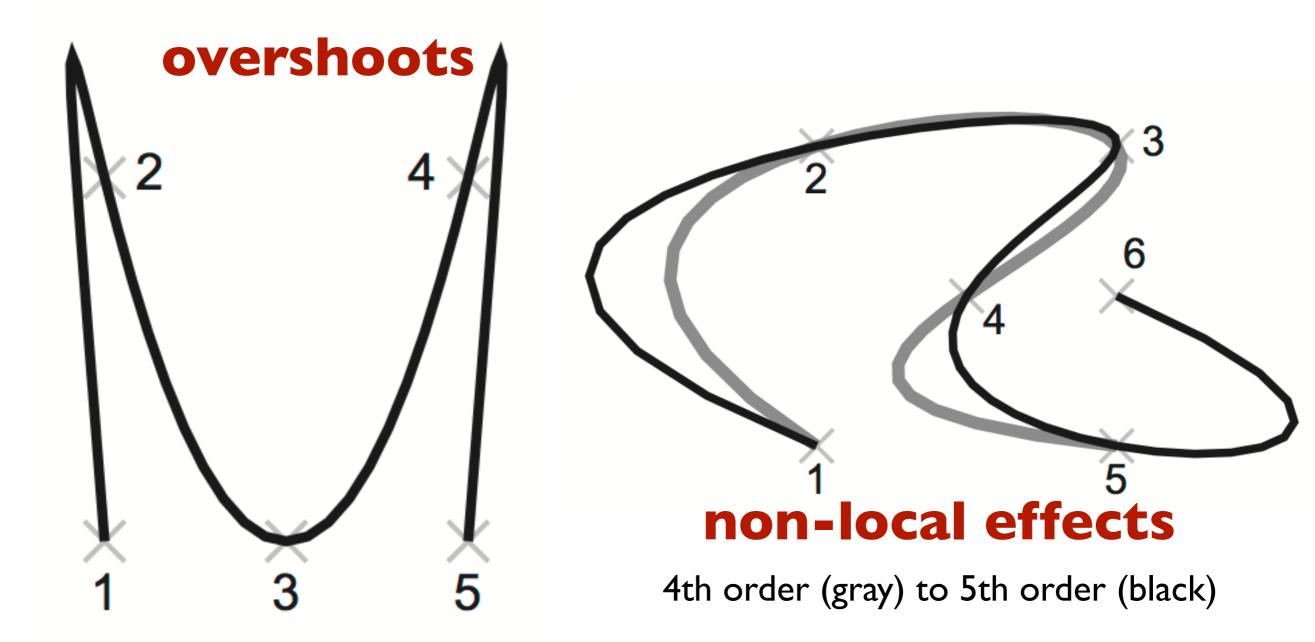
$$\mathbf{b}(u) = \begin{bmatrix} \mathbf{a} \\ \mathbf{b}(u) \\$$

Interpolating Polynomials

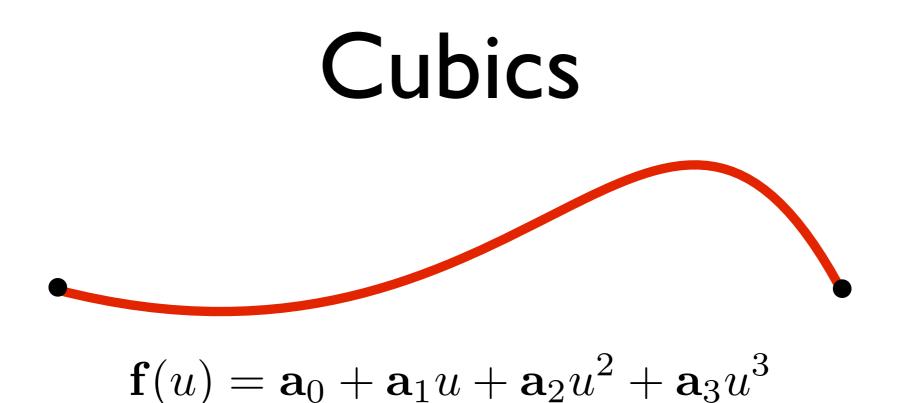
Interpolating polynomials

- Given n+1 data points, can find a unique interpolating polynomial of degree n
- Different methods:
 - Vandermonde matrix
 - Lagrange interpolation
 - Newton interpolation

higher order interpolating polynomials are rarely used



Piecewise Polynomial Curves



- Allow up to C^2 continuity at knots
- need 4 control points
 - may be 4 points on the curve, combination of points and derivatives, ...
- good smoothness and computational properties

Advantages of Cubics

- allow for C2 continuity (C1 often not enough, more than C2 unnecessary)
- n piecewise cubics for n+3 points give minimum curvature curve
- symmetry: position and derivatives can be specified at beginning and end
- good tradeoff between numerical issues and smoothness

We can get any 3 of 4 properties

piecewise cubic
curve interpolates control points
curve has local control
curves has C2 continuity at knots

Natural Cubics

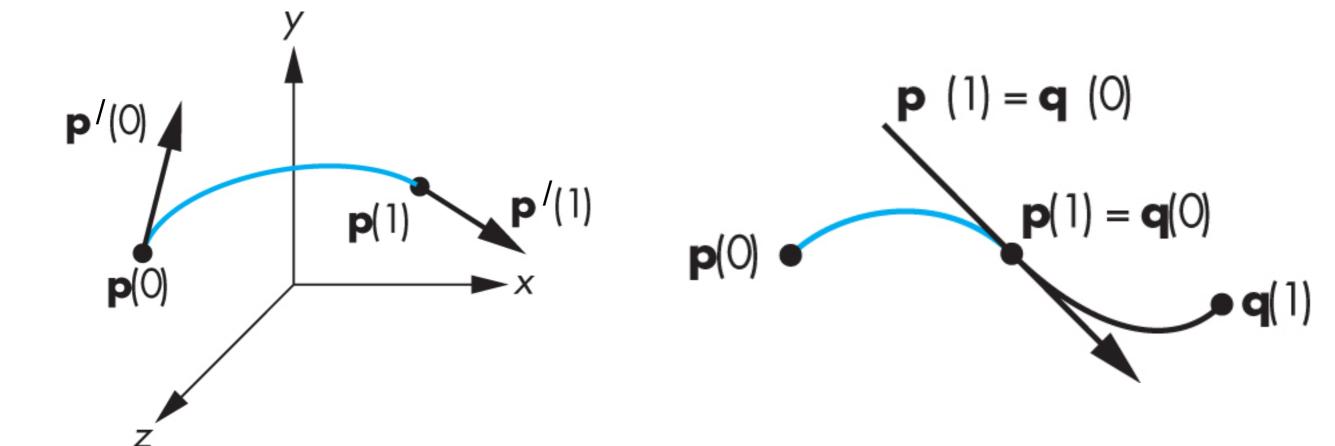
- C2 continuity
- n points -> n-l cubic segments
- control is non-local :(
- ill-conditioned x(
- properties 1, 2, 4 (piecewise cubic, curve interpolates control points, curves has C2 continuity at knots)

Cubic Hermite Curves

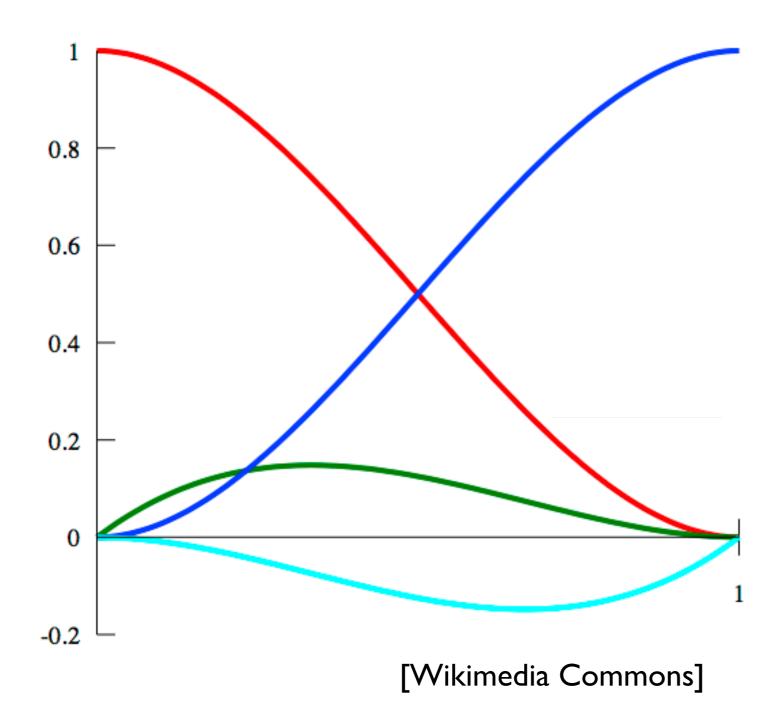
- CI continuity
- specify both positions and derivatives
- properties 1, 2, 3 (piecewise cubic, curve interpolates control points, curve has local control)

Cubic Hermite Curves

Specify endpoints and derivatives construct curve with C^1 continuity



Hermite blending functions



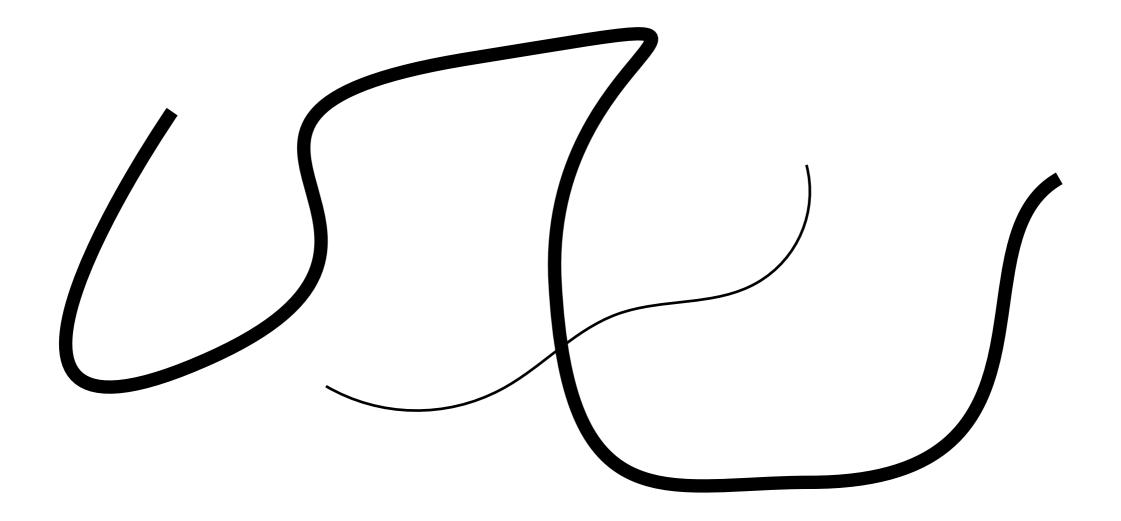
$$b_0(u) = 2u^3 - 3u^2 + 1$$

$$b_1(u) = -2u^3 + 3u^2$$

$$b_2(u) = u^3 - 2u^2 + u$$

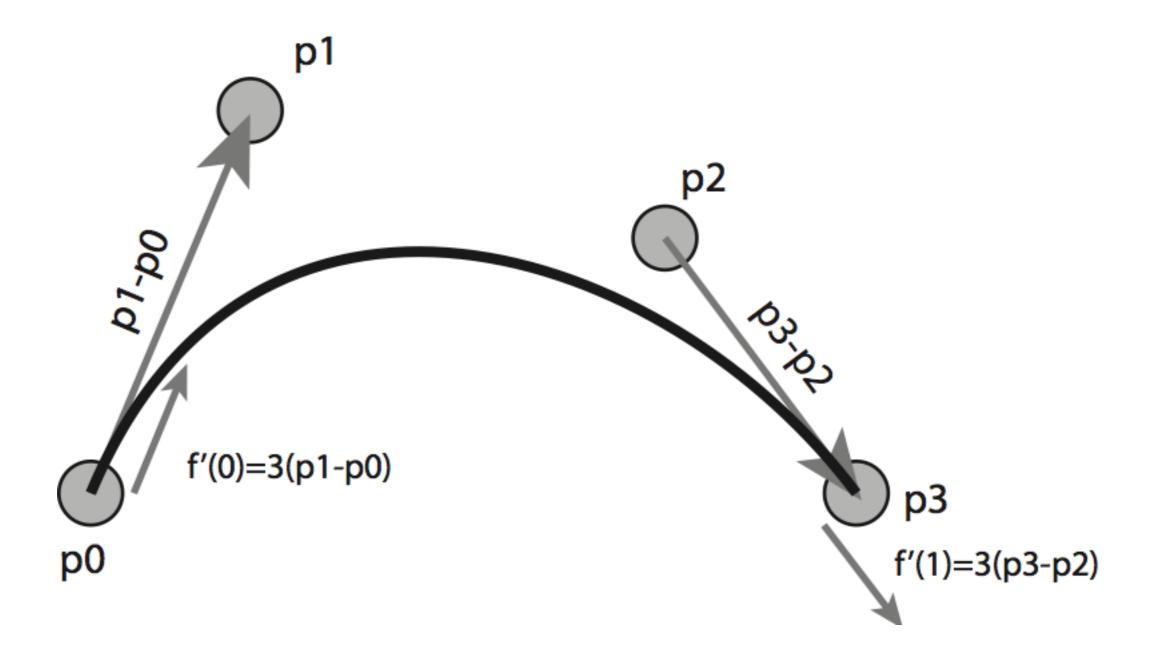
$$b_3(u) = u^3 - u^2$$

Example: keynote curve tool

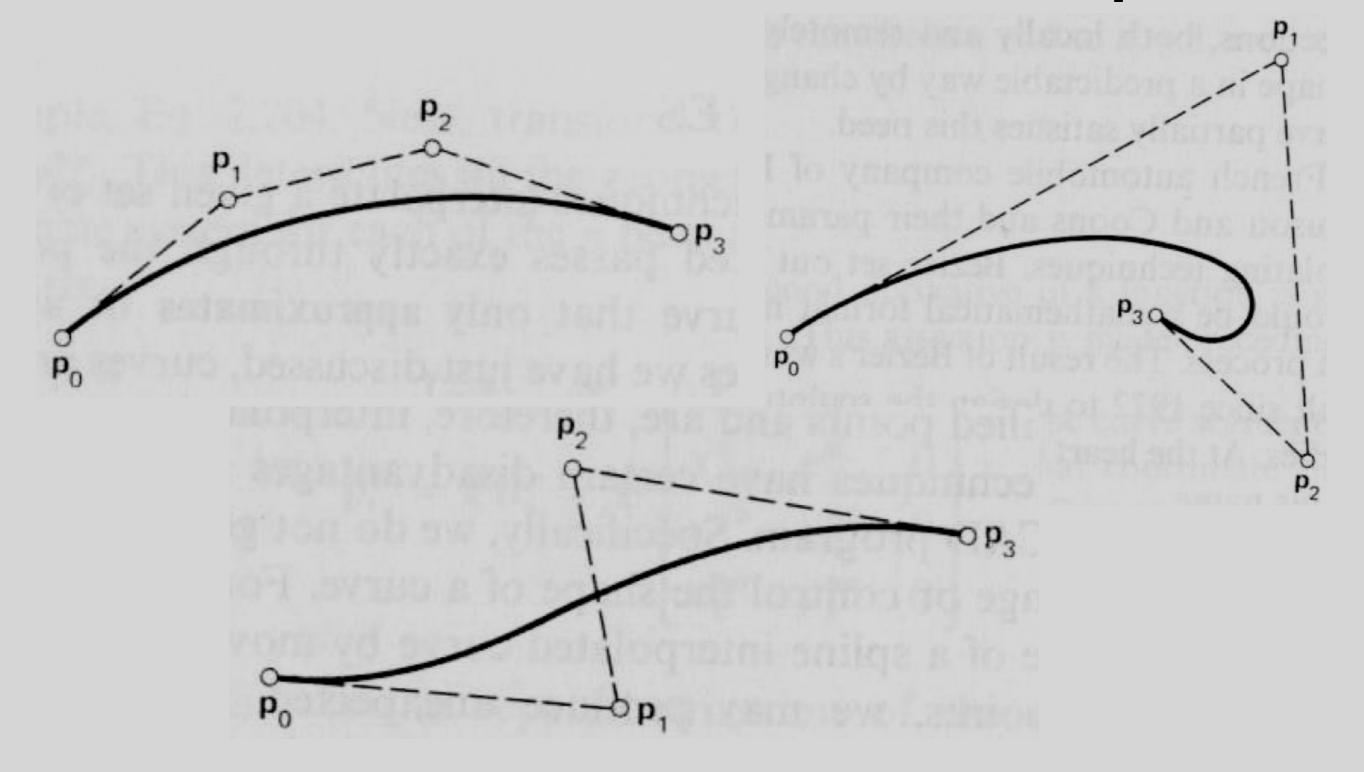


Cubic Bezier Curves

Cubic Bezier Curves



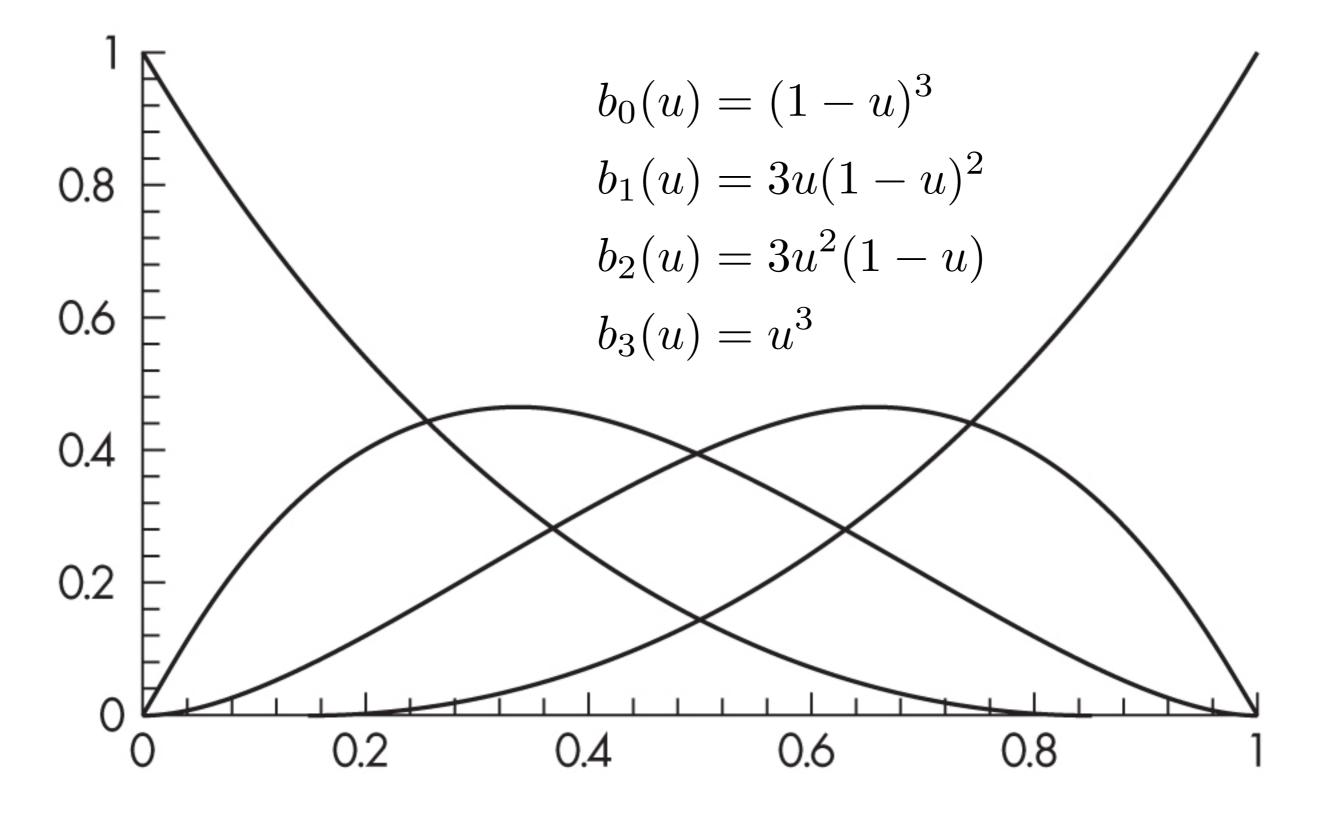
Cubic Bezier Curve Examples



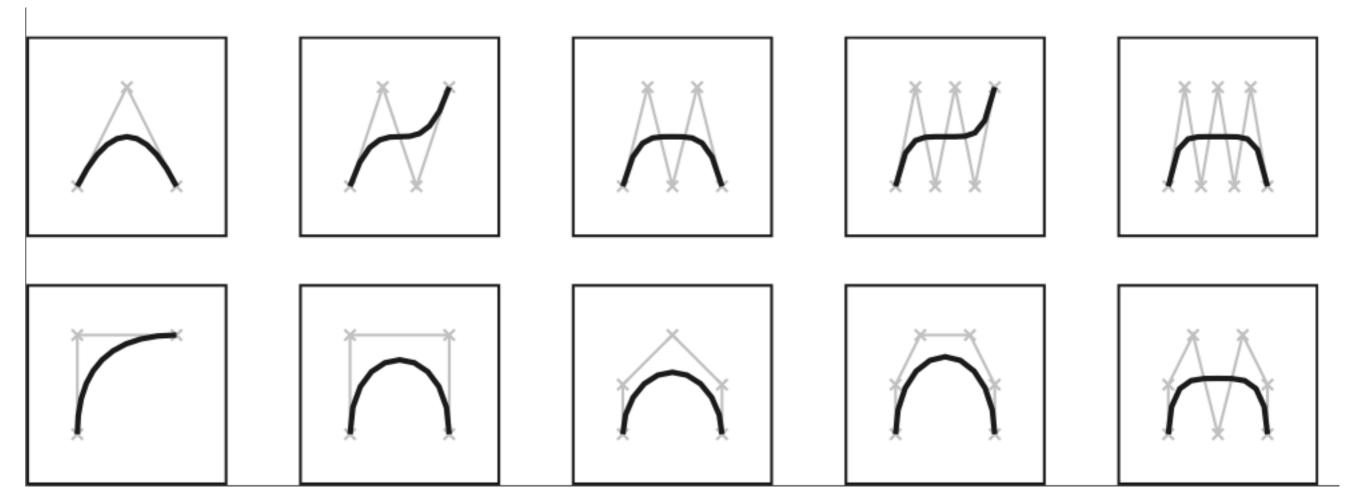
Cubic Bezier blending functions

<whiteboard>

Cubic Bezier blending functions



Bezier Curves Degrees 2-6



Bernstein Polynomials

• The blending functions are a special case of the Bernstein polynomials

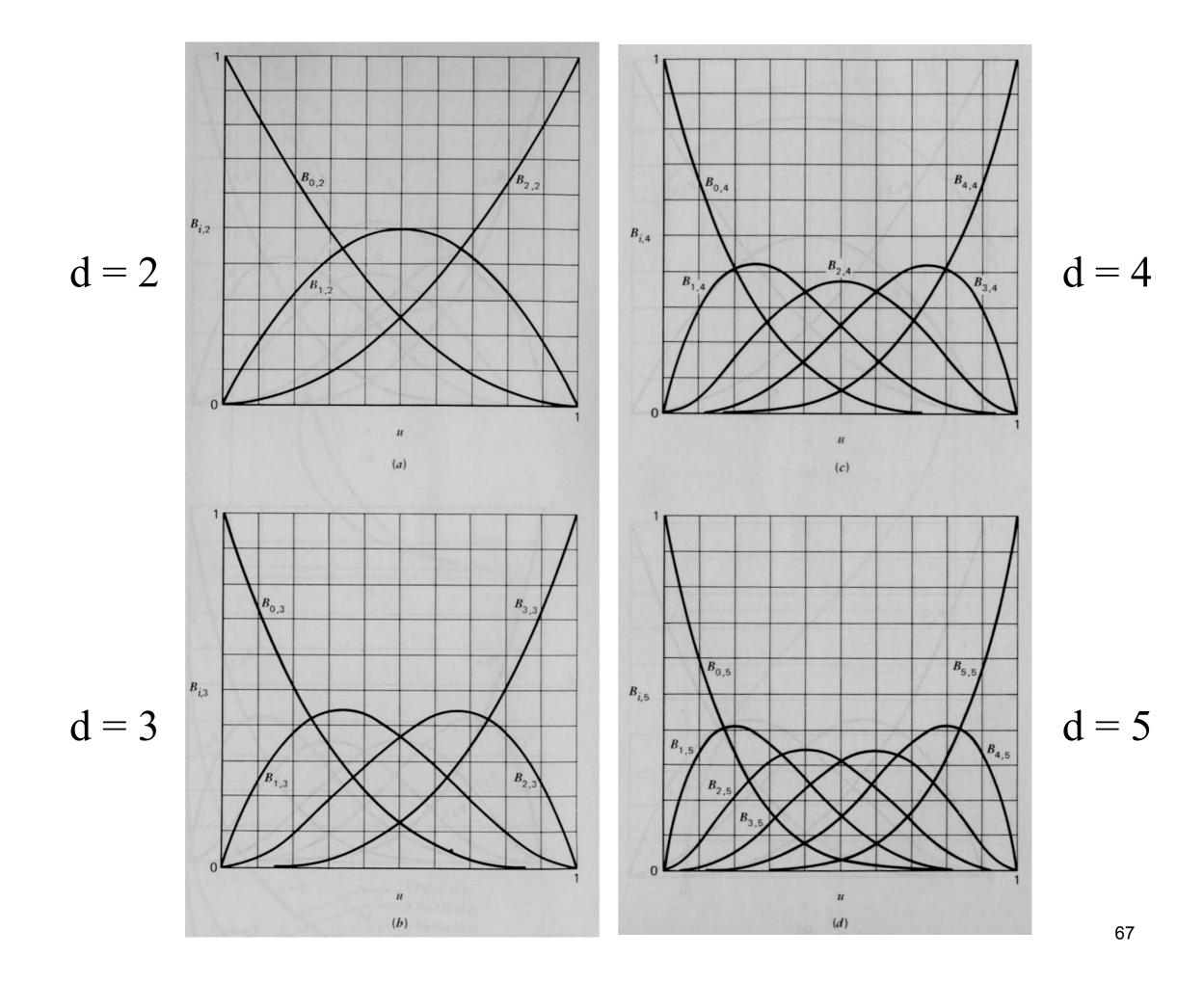
$$b_{kd}(u) = \frac{d!}{k!(d-k)!} u^k (1-u)^{d-k}$$

 These polynomials give the blending polynomials for any degree Bezier form

All roots at 0 and 1

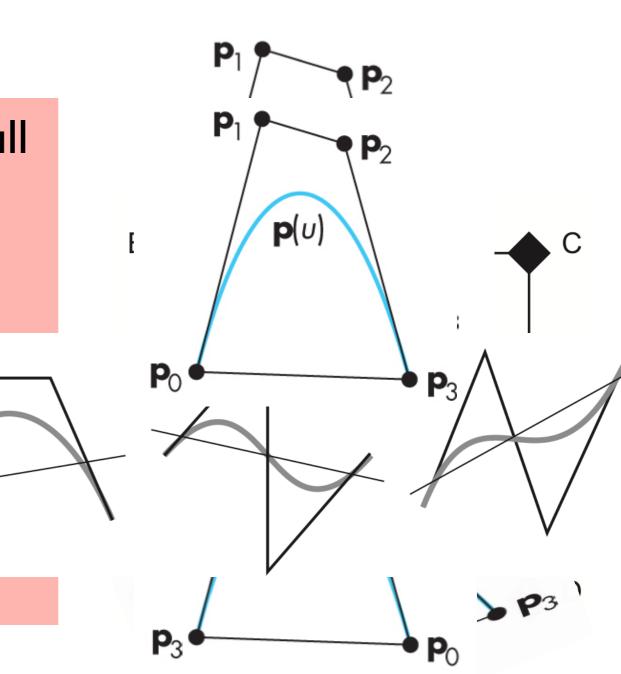
For any degree they all sum to 1

They are all between 0 and 1 inside (0,1)

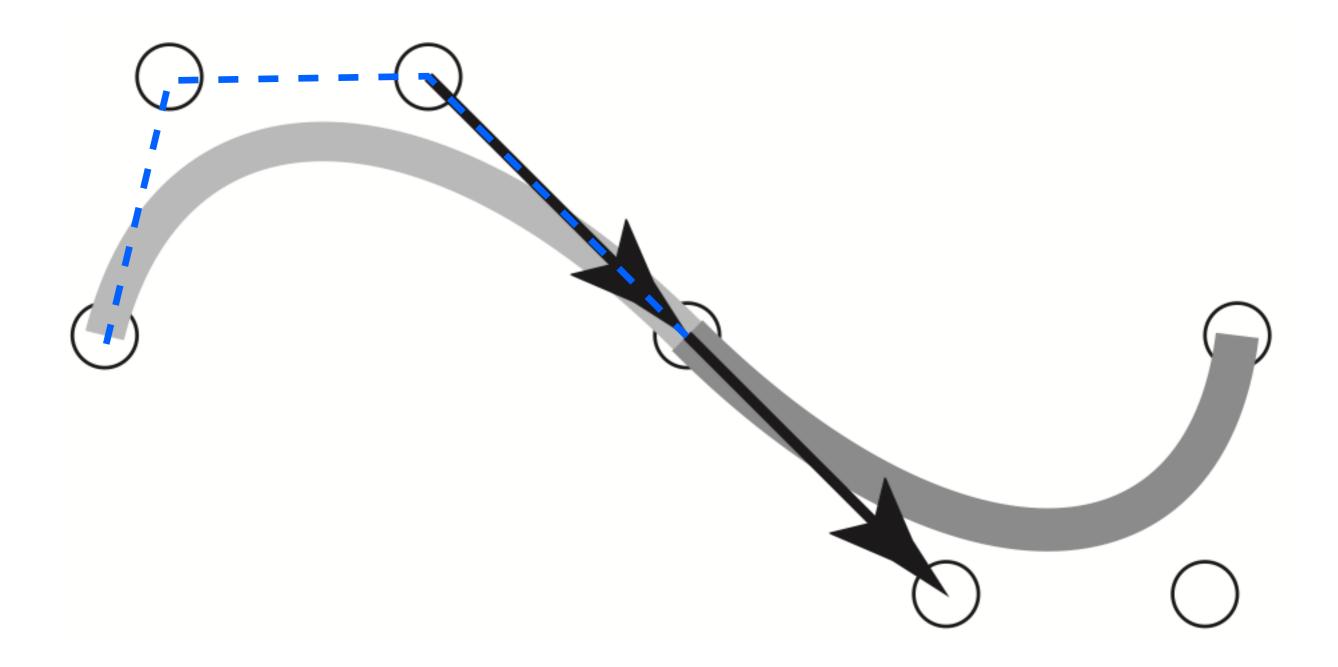


Bezier Curve Properties

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision



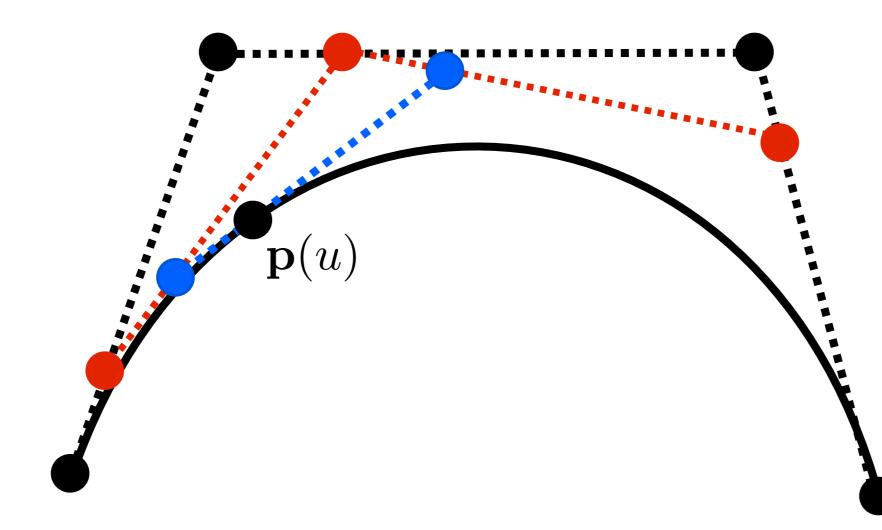
Joining Cubic Bezier Curves



Joining Cubic Bezier Curves

for CI continuity, the vectors must line up and be the same length
for GI continuity, the vectors need only line up

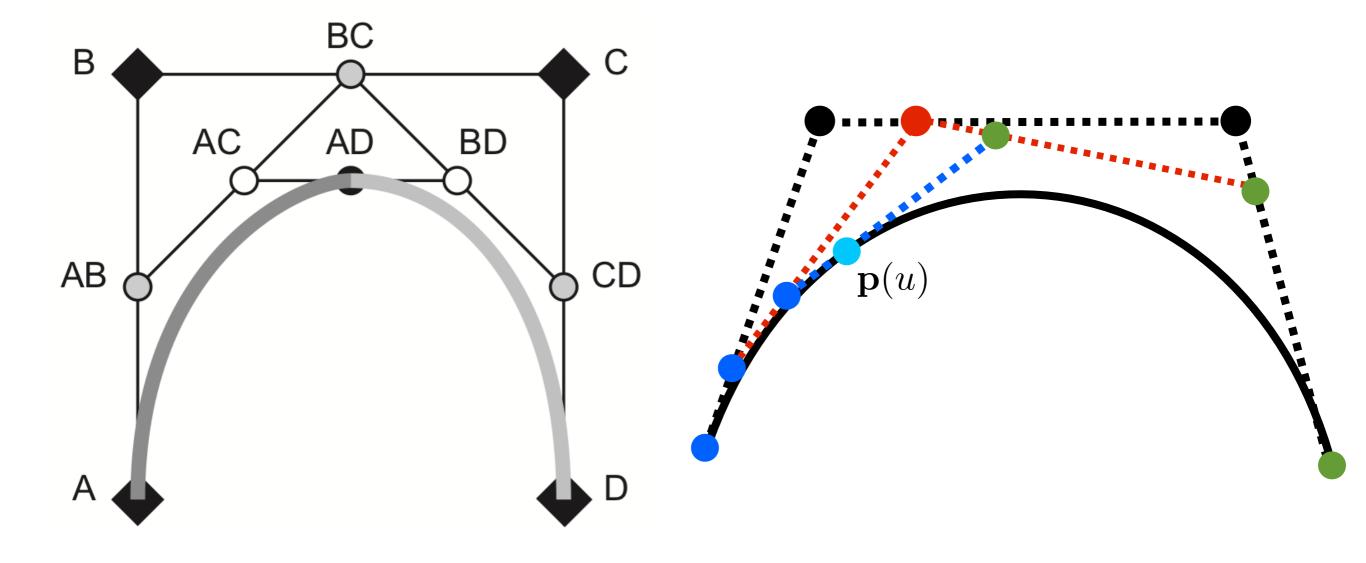
Evaluating p(u) geometrically



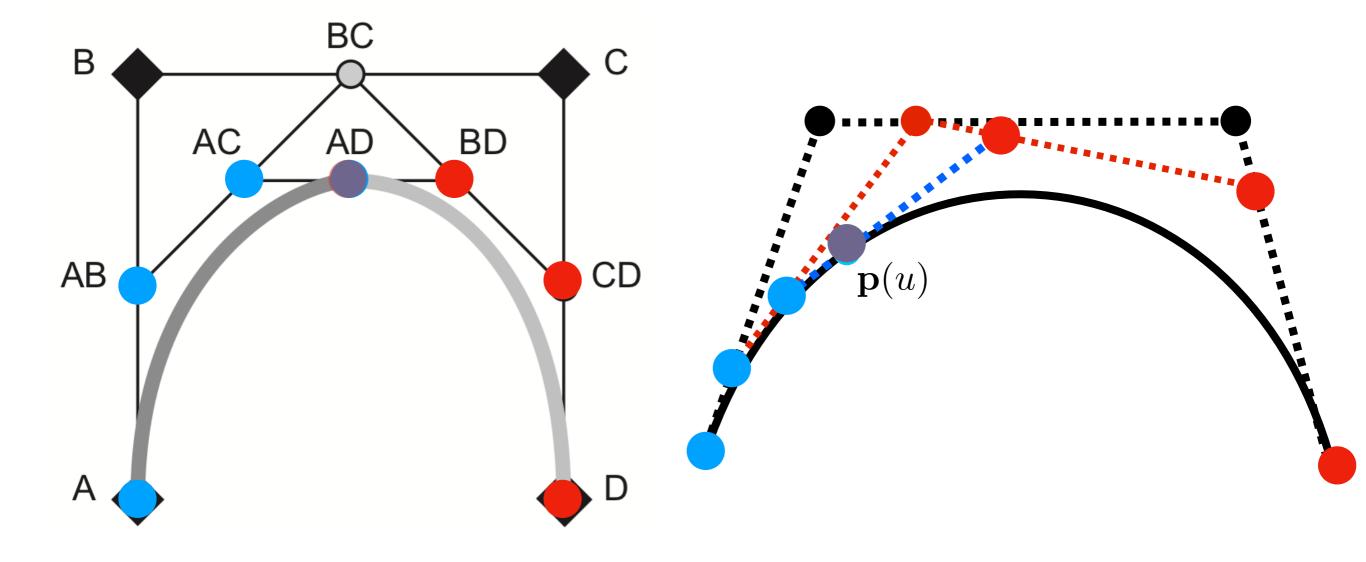
Evaluating p(u) geometrically



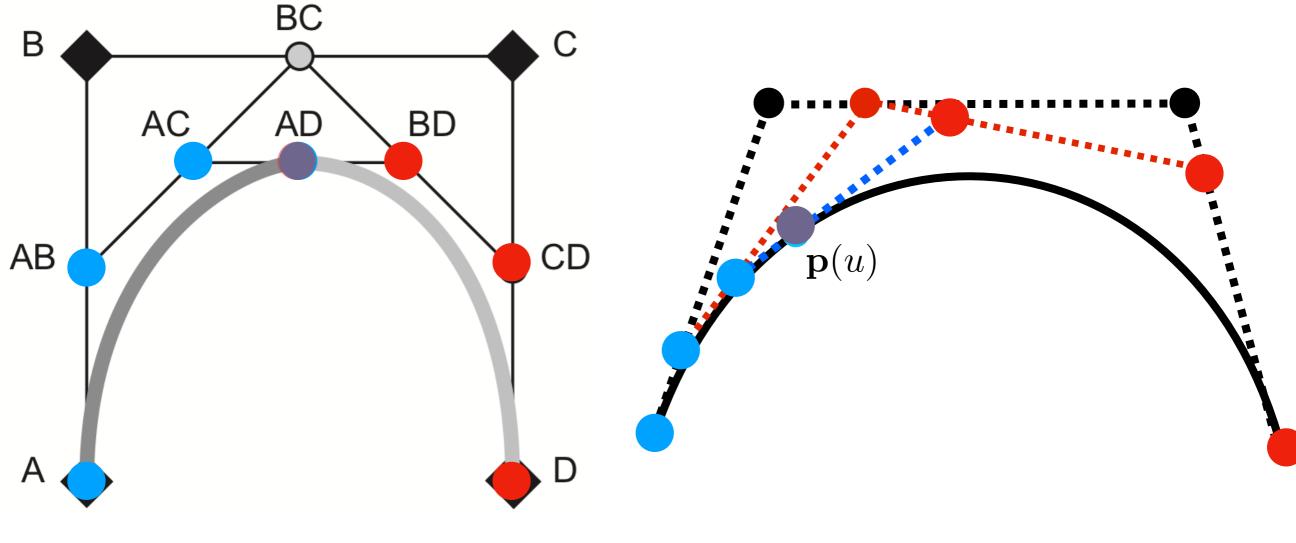
Bezier subdivision



Bezier subdivision



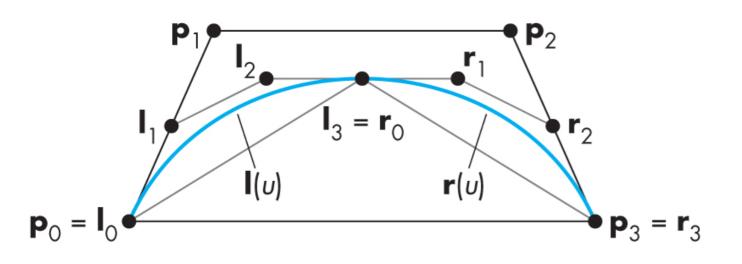
Bezier subdivision

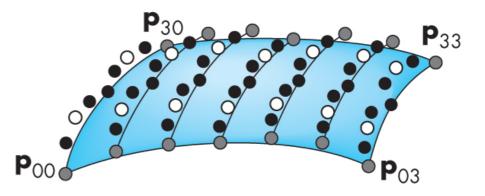


divid and conquer approach can be used for efficient rendering

Recursive Subdivision

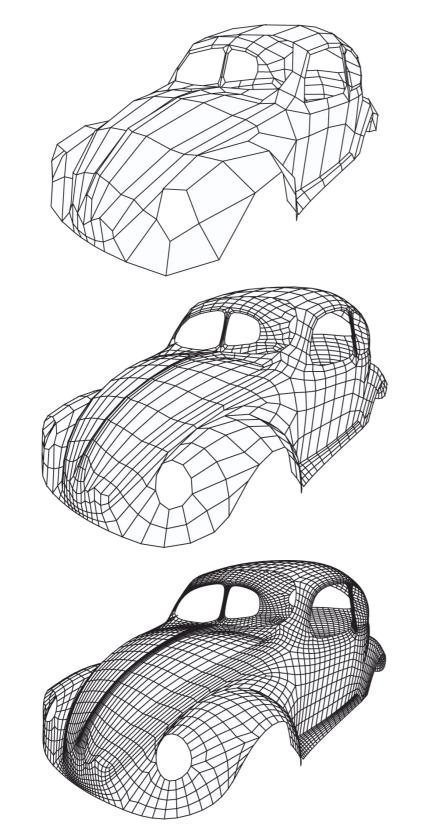
- work with convex hull, does not require evaluating the polynomial
- Bezier curves most convenient -- other curves can be transformed to Bezier
- same approach for surfaces

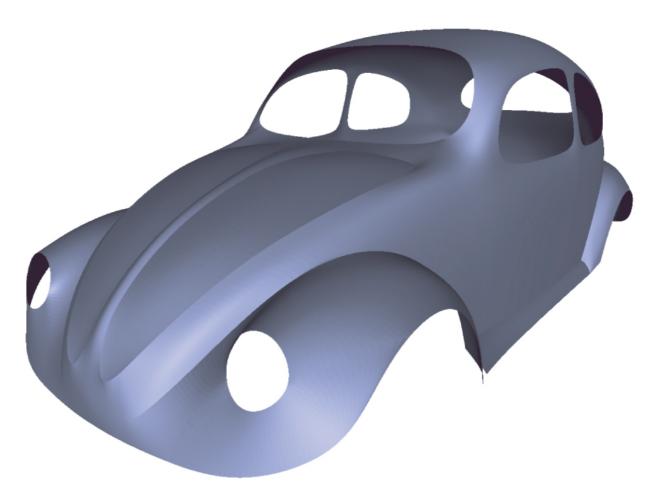




- New points created by subdivision
- Old points discarded after subdivision
- Old points retained after subdivision

Recursive Subdivision for Rendering





Cubic B-Splines

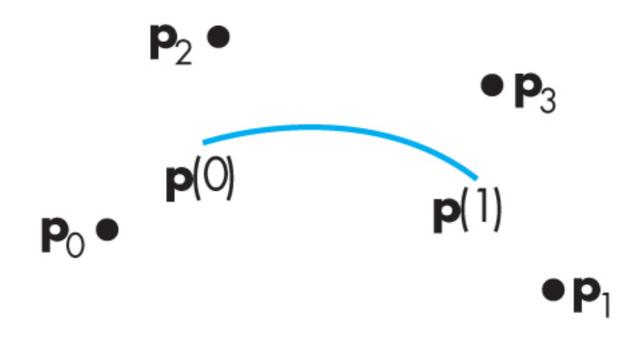
B-spline properties

polynomials of degree d with (d-1) continuity
preferred method for very smooth curves (C2 or higher)

B-spline properties

- •C(d-l) continuity
- local control any point on curve depends on
- d+l control points
- bounded by convex hull
- variation diminishing property

Cubic B-Splines



Spline blending functions

$$b_{0}(u) = \frac{1}{6}(1-u)^{3}$$

$$b_{1}(u) = \frac{1}{6}(4-6u^{2}+3u^{3})$$

$$b_{2}(u) = \frac{1}{6}(1+3u+3u^{2}-3u^{3})$$

$$b_{3}(u) = \frac{1}{6}u^{3}$$

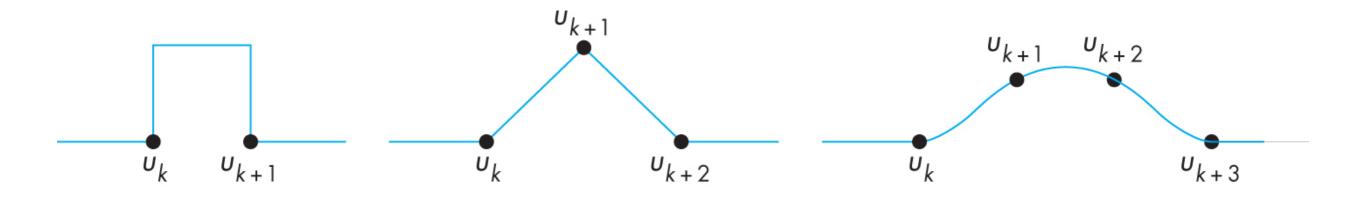
$$b_{0}(u) = b_{0}(u)$$

$$b_{3}(u) = b_{0}(u)$$

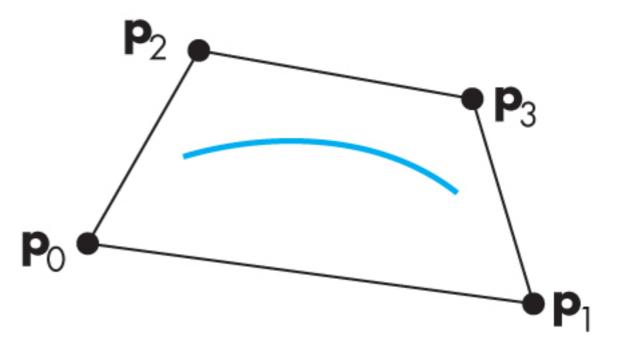
General Splines

• Defined recursively by Cox-de Boor recursion formula

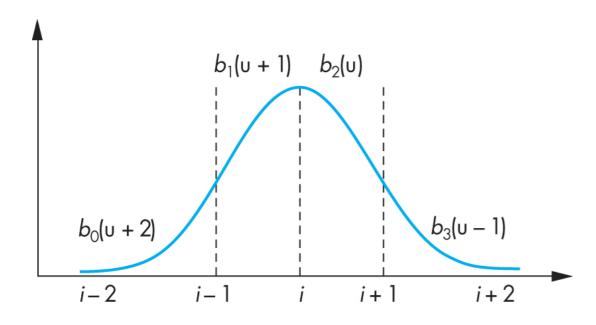
$$b_{j,0}(t) = \begin{cases} 1 & \text{if } t_j \leq t \\ 0 & \text{otherwise} \end{cases}$$
$$b_{j,n}(t) := \frac{t - t_j}{t_{j+n} - t_j} b_{j,n-1}(t) + \frac{t_{j+n+1} - t}{t_{j+n+1} - t_{j+1}} b_{j+1,n-1}(t)$$



Spline properties



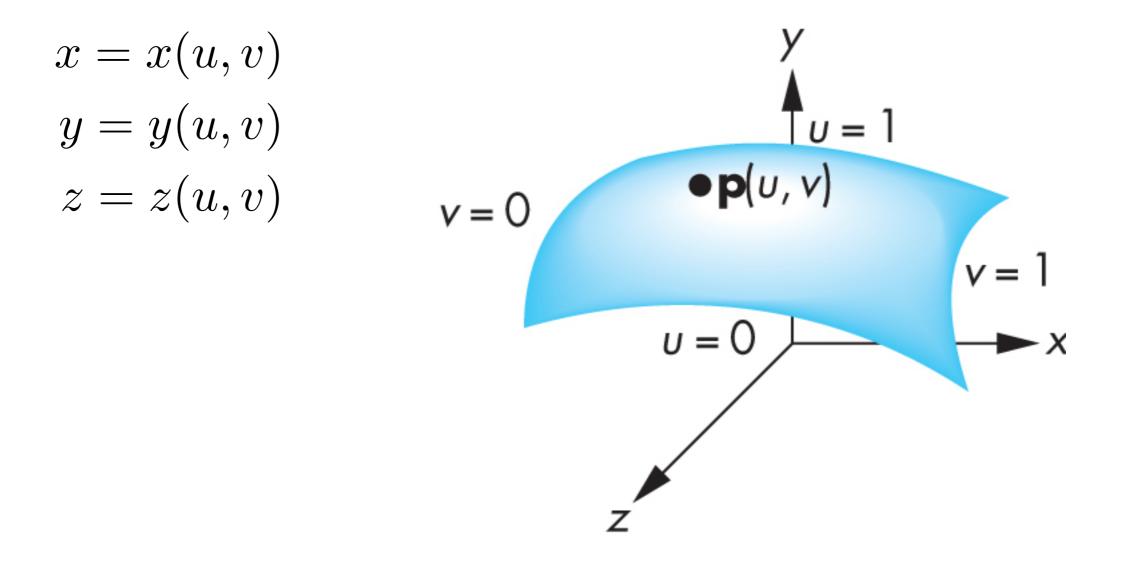
Basis functions



convexity

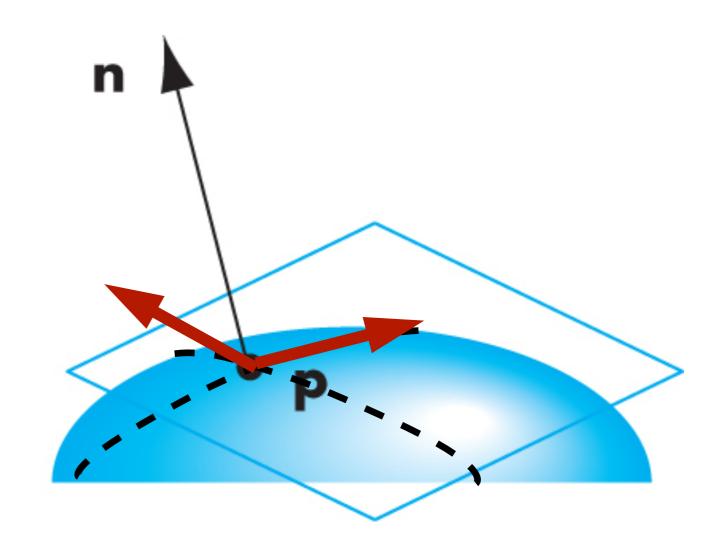
Surfaces

Parametric Surface

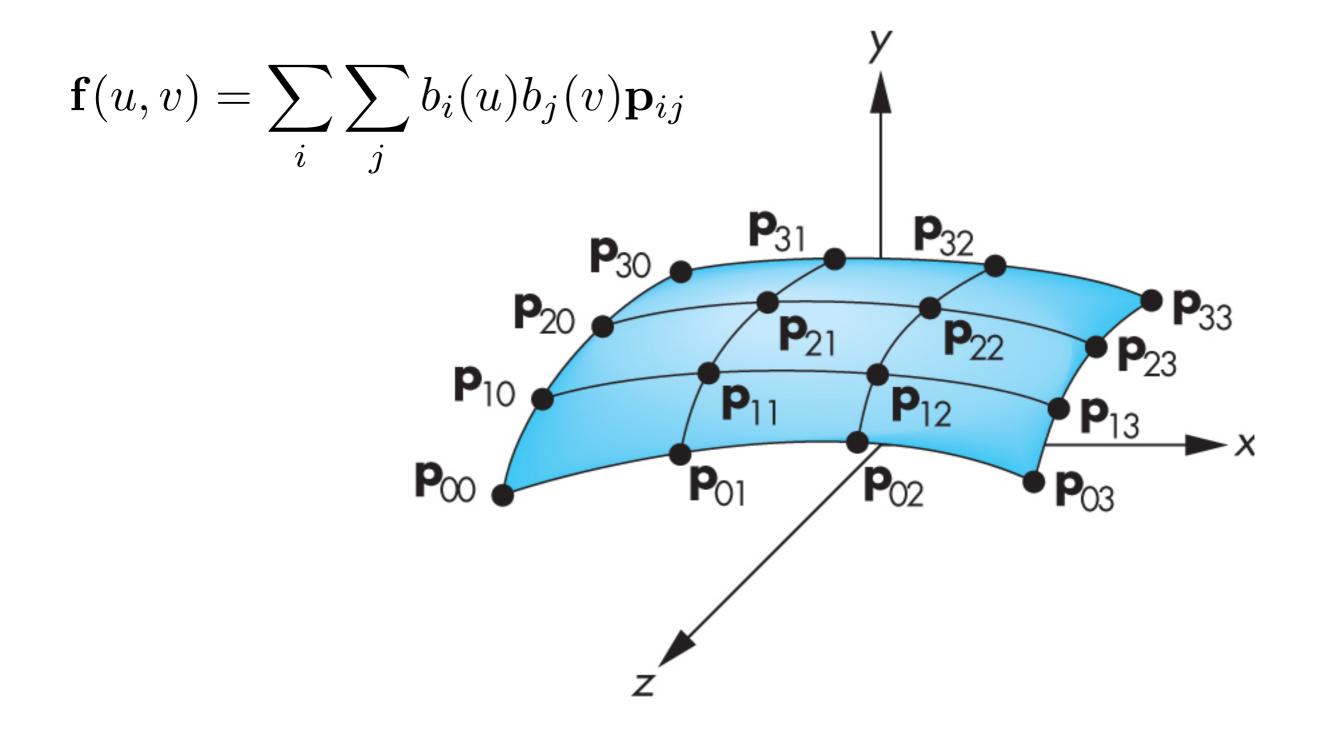


Parametric Surface tangent plane

 $\frac{\frac{\partial x}{\partial u}}{\frac{\partial y}{\partial u}}$ $\frac{\frac{\partial z}{\partial u}}{\frac{\partial z}{\partial u}}$ $\mathbf{t}_u =$ $\frac{\frac{\partial x}{\partial v}}{\frac{\partial y}{\partial z}}$ \mathbf{t}_v



Bicubic Surface Patch



Bezier Surface Patch

