

CS130 : Computer Graphics
Curves

Tamar Shinar
Computer Science & Engineering

UC Riverside

Design considerations
•local control of shape

•design each segment
independently

•smoothness and continuity
•ability to evaluate derivatives
•stability

•small change in input leads
to small change in output

•ease of rendering

Design considerations
•local control of shape

•design each segment
independently

•smoothness and continuity
•ability to evaluate derivatives
•stability

•small change in input leads
to small change in output

•ease of rendering
approximate

out of a
number of

wood strips

Design considerations
•local control of shape

•design each segment
independently

•smoothness and continuity
•ability to evaluate derivatives
•stability

•small change in input leads
to small change in output

•ease of rendering
approximate

out of a
number of

wood strips
join points
or knots

What is a curve?

intuitive idea:
draw with a pen
set of points the pen traces

may be 2D, like on paper
or 3D, space curve

What is a curve?

may have
endpoints

extend
infinitely

or be
closed

How do we specify a curve?

How do we specify a curve?
Implicit

(2D) f(x,y) = 0
test if (x,y) is on the curve

How do we specify a curve?
Implicit

(2D) f(x,y) = 0
test if (x,y) is on the curve

f(x,y) = 0
on curve

How do we specify a curve?
Implicit

(2D) f(x,y) = 0
test if (x,y) is on the curve

f(x,y) ≠ 0
off curve

How do we specify a curve?
Implicit

(2D) f(x,y) = 0
test if (x,y) is on the curve

Parametric
(2D) (x,y) = f(t)
(3D) (x,y,z) = f(t)
map free parameter t
to points on the curve

How do we specify a curve?
Implicit

(2D) f(x,y) = 0
test if (x,y) is on the curve

Parametric
(2D) (x,y) = f(t)
(3D) (x,y,z) = f(t)
map free parameter t
to points on the curve

t = 0

t = 10

t = 5

How do we specify a curve?
Implicit

(2D) f(x,y) = 0
test if (x,y) is on the curve

Parametric
(2D) (x,y) = f(t)
(3D) (x,y,z) = f(t)
map free parameter t
to points on the curve

Procedural
e.g., fractals,
subdivision schemes Fractal: Koch Curve

[G
eo

rg
e

Re
es

e]

How do we specify a curve?
Implicit

(2D) f(x,y) = 0
test if (x,y) is on the curve

Parametric
(2D) (x,y) = f(t)
(3D) (x,y,z) = f(t)
map free parameter t
to points on the curve

Procedural
e.g., fractals,
subdivision schemes Bezier Curve

A curve may have multiple
representations

A curve may have multiple
representations

Implicit
f(x,y) = x2 + y2 - 1 = 0

A curve may have multiple
representations

Parametric
(x,y) = f(t) = (cos t, sin t)

t = 0

t = pi/2

A curve may have multiple
representations

t = 0

t = pi/2

Same curve (set of points),
but different mathematical representation!

Parametric
(x,y) = f(t) = (cos t, sin t),
 t in [0,2pi)

A curve may have multiple
representations

t = 0

t = pi/2

We will focus on parametric representations

Parametric
(x,y) = f(t) = (cos t, sin t),
 t in [0,2pi)

Parametric Form

t = 0

t = 10

t = 5

Parametric Form
Tangent Vector

t = 0

t = 10

t = 5

Parameterization, re-parameterization

t = 0

t = 10

t = 5

f1(t)

Parameterization, re-parameterization

s = 0

s = 1

s = 0.5

trace out
the curve
more quickly

f2(s)

Parameterization, re-parameterization

t = 0
s = 0

s = 1
t = 10

s = 0.5
t = 5

t = 10*s
f1(t) = f1(10*s)
 = f1(f(s))

= f2(s)

relationship:

Parameterization, re-parameterization

f2(s) = f1(f(s))

t = 0 t = 10

s = s0 s = s1

f1(t)

Parameterization, re-parameterization

t = 0 t = 10

s = s0 s = s1

t = f(s)

f2(s) = f1(f(s))

Natural parameterization

t = 0

t = 10

t = 5

note: points
uneven

Natural parameterization

s = 10

s = 5

s = 0

pen moves at a constant velocity:
evenly spaced points

Natural parameterization

s = 0

s = 10

s = 5

also called
arc-length

parameterization

pen moves at a constant velocity:
evenly spaced points

Natural parameterization

s = 0

s = 10

s = 5

pen moves at a constant velocity:
evenly spaced points

also called
arc-length

parameterization

piecewise parametric representation

sometimes easy
to find a parametric

representation

e.g., circle, line segment

piecewise parametric representation

in other cases, not obvious

piecewise parametric representation

strategy: break into simpler pieces

piecewise parametric representation

strategy: break into simpler pieces

switch between functions that represent pieces:

piecewise parametric representation

strategy: break into simpler pieces

switch between functions that represent pieces:
map the inputs to

f1 and f2
to be from 0 to 1

Curve Properties

Local properties:
continuity
position
direction
curvature

Global properties (examples):
closed curve
curve crosses itself

Interpolating vs. non-interpolating

parametric
continuity

geometric
continuity

Continuity: stitching curve segments together

knot

Interpolating vs. Approximating Curves

Interpolating Approximating
(non-interpolating)

Finding a Parametric
Representation

Polynomial Pieces

Polynomial Pieces

n = degreecoefficients
…

Polynomial Pieces

n = degreecoefficients
…

“canonical form” (monomial basis)

Blending functions are more convenient
basis than monomial basis

• “geometric form” (blending functions)

• “canonical form” (monomial basis)

Blending functions are more convenient
basis than monomial basis

Blending functions are more convenient
basis than monomial basis

Blending functions are more convenient
basis than monomial basis

Some
examples 

<whiteboard>

Interpolating Polynomials

Interpolating polynomials

• Given n+1 data points, can find a unique interpolating
polynomial of degree n

• Different methods:

• Vandermonde matrix

• Lagrange interpolation

• Newton interpolation

higher order interpolating
polynomials are rarely used

overshoots

non-local effects
4th order (gray) to 5th order (black)

Piecewise Polynomial Curves

Cubics

• Allow up to C2 continuity at knots

• need 4 control points

• may be 4 points on the curve, combination of points
and derivatives, ...

• good smoothness and computational properties

Advantages of Cubics

• allow for C2 continuity (C1 often not
enough, more than C2 unnecessary)

• n piecewise cubics for n+3 points give

minimum curvature curve

• symmetry: position and derivatives can be

specified at beginning and end

• good tradeoff between numerical issues

and smoothness

We can get any 3 of 4 properties

1.piecewise cubic

2.curve interpolates control points

3.curve has local control

4.curves has C2 continuity at knots

Natural Cubics

• C2 continuity

• n points -> n-1 cubic segments

• control is non-local :(

• ill-conditioned x(

• properties 1, 2, 4 (piecewise cubic, curve interpolates
control points, curves has C2 continuity at knots)

Cubic Hermite Curves

• C1 continuity

• specify both positions and derivatives

• properties 1, 2, 3 (piecewise cubic, curve interpolates
control points, curve has local control)

Cubic Hermite Curves

/

/

Specify endpoints
and derivatives

construct
curve with

C^1 continuity

Hermite blending functions

[Wikimedia Commons]

Example: keynote curve tool

`

Cubic Bezier Curves

Cubic Bezier Curves

Cubic Bezier Curve Examples

Cubic Bezier blending functions

<whiteboard>

Cubic Bezier blending functions

Bezier Curves Degrees 2-6

!66

Bernstein Polynomials

•The blending functions are a special
case of the Bernstein polynomials

•These polynomials give the blending
polynomials for any degree Bezier form

All roots at 0 and 1
For any degree they all sum to 1
They are all between 0 and 1 inside (0,1)

!67

d = 2

d = 3

d = 4

d = 5

Bezier Curve Properties

• curve lies in the convex hull
of the data

• variation diminishing

• symmetry

• affine invariant

• efficient evaluation and
subdivision

Joining Cubic Bezier Curves

Joining Cubic Bezier Curves
• for C1 continuity, the
vectors must line up and
be the same length
• for G1 continuity, the
vectors need only line up

Evaluating p(u) geometrically

Evaluating p(u) geometrically

De Casteljau algorithm

Bezier subdivision

Bezier subdivision

Bezier subdivision

divid and conquer approach can be
used for efficient rendering

Recursive Subdivision

• work with convex hull, does not require evaluating the
polynomial

• Bezier curves most convenient -- other curves can be
transformed to Bezier

• same approach for surfaces

Recursive Subdivision for Rendering

Cubic B-Splines

B-spline properties

•polynomials of degree d with (d-1) continuity
•preferred method for very smooth curves (C2
or higher)

B-spline properties

•C(d-1) continuity
•local control - any point on curve depends on
d+1 control points
•bounded by convex hull
•variation diminishing property

Cubic B-Splines

Spline blending functions

General Splines

• Defined recursively by Cox-de Boor recursion formula

Spline properties

convexity

Basis functions

Surfaces

Parametric Surface

Parametric Surface -
tangent plane

Bicubic Surface Patch

Bezier Surface Patch

Patch lies in
convex hull

