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Design considerations
•local control of shape

•design each segment 
independently

•smoothness and continuity
•ability to evaluate derivatives
•stability

•small change in input leads 
to small change in output

•ease of rendering
approximate 

out of a 
number of 

wood strips
join points
or knots



What is a curve?

intuitive idea: 
draw with a pen 
set of points the pen traces

may be 2D, like on paper 
or 3D, space curve



What is a curve?

may have 
endpoints

extend 
infinitely

or be  
closed
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How do we specify a curve?
Implicit 

(2D)  f(x,y) = 0 
test if (x,y) is on the curve

Parametric 
(2D) (x,y) = f(t) 
(3D) (x,y,z) = f(t) 
map free parameter t 
to points on the curve

Procedural 
e.g., fractals,  
subdivision schemes Fractal: Koch Curve
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How do we specify a curve?
Implicit 

(2D)  f(x,y) = 0 
test if (x,y) is on the curve

Parametric 
(2D) (x,y) = f(t) 
(3D) (x,y,z) = f(t) 
map free parameter t 
to points on the curve

Procedural 
e.g., fractals,  
subdivision schemes Bezier Curve
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A curve may have multiple
representations

Implicit 
f(x,y) = x2 + y2 - 1 = 0 



A curve may have multiple
representations

Parametric 
(x,y) = f(t) = (cos t, sin t) 

t = 0

t = pi/2



A curve may have multiple
representations

t = 0

t = pi/2

Same curve (set of points), 
but different mathematical representation!

Parametric 
(x,y) = f(t) = (cos t, sin t), 
                     t in [0,2pi)



A curve may have multiple
representations

t = 0

t = pi/2

We will focus on parametric representations

Parametric 
(x,y) = f(t) = (cos t, sin t), 
                     t in [0,2pi)



Parametric Form

t = 0

t = 10

t = 5



Parametric Form
Tangent Vector

t = 0

t = 10

t = 5



Parameterization, re-parameterization

t = 0

t = 10

t = 5

f1(t)



Parameterization, re-parameterization

s = 0

s = 1

s = 0.5

trace out  
the curve 
more quickly

f2(s)



Parameterization, re-parameterization

t = 0 
s = 0

s = 1 
t = 10

s = 0.5 
t = 5 

t = 10*s 
f1(t) = f1(10*s) 
       = f1(f(s)) 

= f2(s)

relationship:



Parameterization, re-parameterization

f2(s) = f1(f(s))

t = 0 t = 10

s = s0 s = s1

f1(t)



Parameterization, re-parameterization

t = 0 t = 10

s = s0 s = s1

t = f(s)

f2(s) = f1(f(s))



Natural parameterization

t = 0

t = 10

t = 5

note: points 
uneven



Natural parameterization
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pen moves at a constant velocity: 
evenly spaced points
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Natural parameterization

s = 0

s = 10

s = 5

pen moves at a constant velocity: 
evenly spaced points

also called 
arc-length 

parameterization



piecewise parametric representation

sometimes easy 
to find a parametric 

representation 

e.g., circle, line segment



piecewise parametric representation

in other cases, not obvious



piecewise parametric representation

strategy: break into simpler pieces
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strategy: break into simpler pieces

switch between functions that represent pieces:



piecewise parametric representation

strategy: break into simpler pieces

switch between functions that represent pieces:
map the inputs to  

f1 and f2  
to be from 0 to 1



Curve Properties

Local properties: 
continuity 
position 
direction 
curvature 

Global properties (examples): 
closed curve 
curve crosses itself 

Interpolating vs. non-interpolating 



parametric
continuity

geometric
continuity

Continuity: stitching curve segments together

knot



Interpolating vs. Approximating Curves

Interpolating Approximating
(non-interpolating)



Finding a Parametric 
Representation 



Polynomial Pieces



Polynomial Pieces

n = degreecoefficients
…



Polynomial Pieces

n = degreecoefficients
…

“canonical form” (monomial basis)



Blending functions are more convenient 
basis than monomial basis

• “geometric form” (blending functions)

• “canonical form” (monomial basis)



Blending functions are more convenient 
basis than monomial basis



Blending functions are more convenient 
basis than monomial basis



Blending functions are more convenient 
basis than monomial basis

Some 
examples 

<whiteboard>



Interpolating Polynomials



Interpolating polynomials

• Given n+1 data points, can find a unique interpolating 
polynomial of degree n

• Different methods:

• Vandermonde matrix

• Lagrange interpolation

• Newton interpolation



higher order interpolating 
polynomials are rarely used

overshoots

non-local effects
4th order (gray) to 5th order (black)



Piecewise Polynomial Curves



Cubics

• Allow up to C2 continuity at knots

• need 4 control points

• may be 4 points on the curve, combination of points 
and derivatives, ...

• good smoothness and computational properties



Advantages of Cubics

• allow for C2 continuity (C1 often not 
enough, more than C2 unnecessary)

• n piecewise cubics for n+3 points give 

minimum curvature curve

• symmetry: position and derivatives can be 

specified at beginning and end

• good tradeoff between numerical issues 

and smoothness



We can get any 3 of 4 properties

1.piecewise cubic

2.curve interpolates control points

3.curve has local control

4.curves has C2 continuity at knots



Natural Cubics

• C2 continuity

• n points -> n-1 cubic segments

• control is non-local :(

• ill-conditioned x(

• properties 1, 2, 4 (piecewise cubic, curve interpolates 
control points, curves has C2 continuity at knots)



Cubic Hermite Curves

• C1 continuity

• specify both positions and derivatives

• properties 1, 2, 3 (piecewise cubic, curve interpolates 
control points, curve has local control)



Cubic Hermite Curves

/

/

Specify endpoints
and derivatives

construct 
curve with

C^1 continuity



Hermite blending functions

[Wikimedia Commons]



Example: keynote curve tool

`



Cubic Bezier Curves



Cubic Bezier Curves



Cubic Bezier Curve Examples



Cubic Bezier blending functions

<whiteboard>



Cubic Bezier blending functions



Bezier Curves Degrees 2-6
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Bernstein Polynomials

•The blending functions are a special 
case of the Bernstein polynomials 

•These polynomials give the blending 
polynomials for any degree Bezier form 

All roots at 0 and 1 
For any degree they all sum to 1 
They are all between 0 and 1 inside (0,1) 
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d = 2

d = 3

d = 4

d = 5



Bezier Curve Properties

• curve lies in the convex hull 
of the data

• variation diminishing

• symmetry

• affine invariant

• efficient evaluation and 
subdivision



Joining Cubic Bezier Curves



Joining Cubic Bezier Curves
• for C1 continuity, the 
vectors must line up and 
be the same length
• for G1 continuity, the 
vectors need only line up



Evaluating p(u) geometrically



Evaluating p(u) geometrically

De Casteljau algorithm



Bezier subdivision



Bezier subdivision



Bezier subdivision

divid and conquer approach can be 
used for efficient rendering



Recursive Subdivision

• work with convex hull, does not require evaluating the 
polynomial

• Bezier curves most convenient -- other curves can be 
transformed to Bezier

• same approach for surfaces



Recursive Subdivision for Rendering



Cubic B-Splines



B-spline properties

•polynomials of degree d with (d-1) continuity
•preferred method for very smooth curves (C2 
or higher)



B-spline properties

•C(d-1) continuity
•local control - any point on curve depends on 
d+1 control points
•bounded by convex hull
•variation diminishing property



Cubic B-Splines



Spline blending functions



General Splines

• Defined recursively by Cox-de Boor recursion formula



Spline properties

convexity

Basis functions



Surfaces



Parametric Surface



Parametric Surface - 
tangent plane



Bicubic Surface Patch



Bezier Surface Patch

Patch lies in 
convex hull




