Line Rasterization

University of California Riverside

Raster Image

Object orientedfor each object...

- Image oriented
 - for each pixel...

What is rasterization?

Rasterization is the process of determining which pixels are "covered" by the primitive

Rasterization

- In: 2D primitives (floating point)
- Out: covered pixels (integer)
- Must be fast (called **many times**)
- Visually pleasing
 - lines have constant width
 - lines have no gaps

• DDA = "digital differential analyzer"

- DDA = "digital differential analyzer"
- Plot line y = mx + b

- DDA = "digital differential analyzer"
- Plot line y = mx + b
- For each x:

- DDA = "digital differential analyzer"
- Plot line y = mx + b
- For each x:

•
$$y = mx + b$$

- DDA = "digital differential analyzer"
- Plot line y = mx + b
- For each x:

•
$$y = mx + b$$

• turn on pixel (x, round(y))

- Assume $|m| \leq 1$
- March from left to right

- Assume $|m| \leq 1$
- March from left to right
 - $x_0 = \text{start}, x_{i+1} = x_i + 1, x_n = \text{end}$

Assume |m| ≤ 1
 March from left to right

 x₀ = start, x_{i+1} = x_i + 1, x_n = end
 y_{i+1} = mx_{i+1} + b
 m(x_i + 1) + b

$$= y_i + m$$

Assume |m| ≤ 1
 March from left to right

 x₀ = start, x_{i+1} = x_i + 1, x_n = end
 y_{i+1} = mx_{i+1} + b
 m(x_i + 1) + b
 = y_i + m

• Each time:

- Assume |m| ≤ 1
 March from left to right

 x₀ = start, x_{i+1} = x_i + 1, x_n = end
 y_{i+1} = mx_{i+1} + b
 m(x_i + 1) + b
 = y_i + m
- Each time:
 - Increment x

- Assume |m| ≤ 1
 March from left to right

 x₀ = start, x_{i+1} = x_i + 1, x_n = end
 y_{i+1} = mx_{i+1} + b
 m(x_i + 1) + b
 = y_i + m
- Each time:
 - Increment x
 - Add m to y

- Assume |m| ≤ 1
 March from left to right

•
$$x_0 = \text{start}, x_{i+1} = x_i + 1, x_n = \text{end}$$

$$y_{i+1} = mx_{i+1} + b$$

= $m(x_i + 1) + b$
= $y_i + m$

• Each time:

- Increment x
- Add m to y
- turn on pixel $(x_i, round(y_i))$

• What if |m| > 1?

What if |m| > 1?
Increment y by m

- What if |m| > 1?
- Increment y by m
- round(y) may skip an integer
 - gap in the line

- What if |m| > 1?
- Increment y by m
- round(y) may skip an integer
 - gap in the line
- Swap the roles of x and y
 - Loop over y, compute and round x

DDA algorithm for lines - limitations

Must round for each pixel
very slow
Only use ops: +, -, ×
Even better: +, -

Rasterization choices

Thin, no gaps Still have choices

Midpoint algorithm

- Assume $0 \le m \le 1$
- Move from left to right
- Choose between (x + 1, y) and (x + 1, y + 1)

$$y = y_0$$

for $x = x_0, \dots, x_1$ do
draw (x, y)
if $\langle \text{condition} \rangle$ then
 $y \leftarrow y + 1$

Check midpoint location

Check midpoint location

Check midpoint location

Criterion

Implicit line equation:

$$f(\mathbf{x}) = \mathbf{n} \cdot (\mathbf{x} - \mathbf{x}_0) = 0$$

Criterion

Implicit line equation:

$$f(\mathbf{x}) = \mathbf{n} \cdot (\mathbf{x} - \mathbf{x}_0) = 0$$

Evaluate f at midpoint:

$$f\left(x+1,y+\frac{1}{2}\right) \stackrel{?}{<} 0$$

Criterion

Implicit line equation:

$$f(\mathbf{x}) = \mathbf{n} \cdot (\mathbf{x} - \mathbf{x}_0) = 0$$

Evaluate f at midpoint:

$$f\left(x+1,y+\frac{1}{2}\right) < 0$$

Midpoint algorithm $(0 \le m \le 1)$

$$y \leftarrow y_0$$

for $x = x_0, \dots, x_1$ do
draw (x, y)
if $f(x + 1, y + \frac{1}{2}) < 0$ then
 $y \leftarrow y + 1$

- Compute initial f(x, y)
- Compute next by updating previous
- Update with *one* addition

$$f(x,y) = (y_0 - y_1)x + (x_1 - x_0)y + (x_0y_1 - x_1y_0)$$

- Compute initial f(x, y)
- Compute next by updating previous
- Update with *one* addition

$$f(x,y) = (y_0 - y_1)x + (x_1 - x_0)y + (x_0y_1 - x_1y_0)$$

$$f(x+1,y) = f(x,y) + (y_0 - y_1)$$

- Compute initial f(x, y)
- Compute next by updating previous
- Update with *one* addition

$$f(x,y) = (y_0 - y_1)x + (x_1 - x_0)y + (x_0y_1 - x_1y_0)$$

$$f(x+1,y) = f(x,y) + (y_0 - y_1)$$

$$f(x+1,y+1) = f(x,y) + (y_0 - y_1) + (x_1 - x_0)$$

$$y \leftarrow y_0$$

$$d \leftarrow f(x_0 + 1, y_0 + \frac{1}{2})$$

for $x = x_0, \dots, x_1$ do

$$draw(x, y)$$

if $d < 0$ then

$$y \leftarrow y + 1$$

$$d \leftarrow d + (y_0 - y_1) + (x_1 - x_0)$$

else

$$d \leftarrow d + (y_0 - y_1)$$

Other cases: $0 \le m \le 1$

Other cases: $-1 \le m \le 0$

Other cases: |m| > 1

