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Raster Image

Object oriented
for each object. . .

Image oriented
for each pixel. . .



What is rasterization?

Rasterization is the process of determining which
pixels are “covered” by the primitive



Rasterization

In: 2D primitives (floating point)

Out: covered pixels (integer)

Must be fast (called many times)
Visually pleasing

lines have constant width
lines have no gaps



DDA algorithm for lines

DDA = “digital differential analyzer”

Plot line y = mx + b
For each x:

y = mx + b
turn on pixel (x, round(y))
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DDA algorithm for lines

Assume |m| ≤ 1
March from left to right

x0 = start, xi+1 = xi + 1, xn = end

yi+1 = mxi+1 + b

= m(xi + 1) + b

= yi + m

Each time:
Increment x
Add m to y
turn on pixel (xi, round(yi))
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DDA algorithm for lines

What if |m| > 1?

Increment y by m
round(y) may skip an integer

gap in the line

Swap the roles of x and y
Loop over y, compute and round x
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DDA algorithm for lines - limitations

Must round for each pixel
very slow

Only use ops: +,−,×
Even better: +,−



Rasterization choices

Thin, no gaps

Still have choices



Midpoint algorithm

Assume 0 ≤ m ≤ 1

Move from left to right

Choose between (x + 1, y) and (x + 1, y + 1)

y = y0
for x = x0, . . . , x1 do

draw(x, y)
if 〈condition〉 then

y ← y + 1



Check midpoint location



Check midpoint location



Check midpoint location



Criterion

Implicit line equation:

f(x) = n · (x− x0) = 0

Evaluate f at midpoint:

f

(
x + 1, y +

1

2

)
?
< 0
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Midpoint algorithm (0 ≤ m ≤ 1)

y ← y0
for x = x0, . . . , x1 do

draw(x, y)
if f(x + 1, y + 1

2) < 0 then
y ← y + 1



Efficiency: incremental update

Compute initial f(x, y)

Compute next by updating previous

Update with one addition

f(x, y) = (y0 − y1)x + (x1 − x0)y + (x0y1 − x1y0)

f(x + 1, y) = f(x, y) + (y0 − y1)

f(x + 1, y + 1) = f(x, y) + (y0 − y1) + (x1 − x0)
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Efficiency: incremental update

y ← y0
d← f(x0 + 1, y0 + 1

2)
for x = x0, . . . , x1 do

draw(x, y)
if d < 0 then

y ← y + 1
d← d + (y0 − y1) + (x1 − x0)

else
d← d + (y0 − y1)



Other cases: 0 ≤ m ≤ 1



Other cases: −1 ≤ m ≤ 0



Other cases: |m| > 1


