Line Rasterization

University of California Riverside

Raster Image

- Object oriented
- for each object...

- Image oriented
- for each pixel...

What is rasterization?

Rasterization is the process of determining which pixels are "covered" by the primitive

Rasterization

- In: 2D primitives (floating point)
- Out: covered pixels (integer)
- Must be fast (called many times)
- Visually pleasing
- lines have constant width
- lines have no gaps

DDA algorithm for lines

- DDA $=$ "digital differential analyzer"

DDA algorithm for lines

- DDA = "digital differential analyzer"
- Plot line $y=m x+b$

DDA algorithm for lines

- DDA $=$ "digital differential analyzer"
- Plot line $y=m x+b$
- For each x :

DDA algorithm for lines

- DDA $=$ "digital differential analyzer"
- Plot line $y=m x+b$
- For each x :
- $y=m x+b$

DDA algorithm for lines

- DDA $=$ "digital differential analyzer"
- Plot line $y=m x+b$
- For each x :
- $y=m x+b$
- turn on pixel $(x, \operatorname{round}(y))$

DDA algorithm for lines

- Assume $|m| \leq 1$
- March from left to right

DDA algorithm for lines

- Assume $|m| \leq 1$
- March from left to right
- $x_{0}=$ start, $x_{i+1}=x_{i}+1, x_{n}=$ end

DDA algorithm for lines

- Assume $|m| \leq 1$
- March from left to right
- $x_{0}=$ start, $x_{i+1}=x_{i}+1, x_{n}=$ end

$$
\begin{aligned}
y_{i+1} & =m x_{i+1}+b \\
& =m\left(x_{i}+1\right)+b \\
& =y_{i}+m
\end{aligned}
$$

DDA algorithm for lines

- Assume $|m| \leq 1$
- March from left to right
- $x_{0}=$ start, $x_{i+1}=x_{i}+1, x_{n}=$ end

$$
\begin{aligned}
y_{i+1} & =m x_{i+1}+b \\
& =m\left(x_{i}+1\right)+b \\
& =y_{i}+m
\end{aligned}
$$

- Each time:

DDA algorithm for lines

- Assume $|m| \leq 1$
- March from left to right
- $x_{0}=$ start $, x_{i+1}=x_{i}+1, x_{n}=$ end

$$
\begin{aligned}
y_{i+1} & =m x_{i+1}+b \\
& =m\left(x_{i}+1\right)+b \\
& =y_{i}+m
\end{aligned}
$$

- Each time:
- Increment x

DDA algorithm for lines

- Assume $|m| \leq 1$
- March from left to right
- $x_{0}=$ start, $x_{i+1}=x_{i}+1, x_{n}=$ end

$$
\begin{aligned}
y_{i+1} & =m x_{i+1}+b \\
& =m\left(x_{i}+1\right)+b \\
& =y_{i}+m
\end{aligned}
$$

- Each time:
- Increment x
- Add m to y

DDA algorithm for lines

- Assume $|m| \leq 1$
- March from left to right
- $x_{0}=$ start, $x_{i+1}=x_{i}+1, x_{n}=$ end

$$
\begin{aligned}
y_{i+1} & =m x_{i+1}+b \\
& =m\left(x_{i}+1\right)+b \\
& =y_{i}+m
\end{aligned}
$$

- Each time:
- Increment x
- Add m to y
- turn on pixel $\left(x_{i}, \operatorname{round}\left(y_{i}\right)\right)$

DDA algorithm for lines

- What if $|m|>1$?

DDA algorithm for lines

- What if $|m|>1$?
- Increment y by m

DDA algorithm for lines

- What if $|m|>1$?
- Increment y by m
- round(y) may skip an integer
- gap in the line

DDA algorithm for lines

- What if $|m|>1$?
- Increment y by m
- round(y) may skip an integer
- gap in the line
- Swap the roles of x and y
- Loop over y, compute and round x

DDA algorithm for lines - limitations

- Must round for each pixel
- very slow
- Only use ops:,,$+- \times$
- Even better: +,-

Rasterization choices

- Thin, no gaps
- Still have choices

Midpoint algorithm

- Assume $0 \leq m \leq 1$
- Move from left to right
- Choose between $(x+1, y)$ and $(x+1, y+1)$

$$
y=y_{0}
$$

for $x=x_{0}, \ldots, x_{1}$ do draw (x, y)
if 〈condition〉 then

$$
y \leftarrow y+1
$$

Check midpoint location

Check midpoint location

Check midpoint location

Criterion

Implicit line equation:
$f(\mathbf{x})=\mathbf{n} \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)=0$

Criterion

Implicit line equation:
$f(\mathbf{x})=\mathbf{n} \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)=0$
Evaluate f at midpoint:

$$
f\left(x+1, y+\frac{1}{2}\right) \stackrel{?}{<} 0
$$

Criterion

Implicit line equation:
$f(\mathbf{x})=\mathbf{n} \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)=0$
Evaluate f at midpoint:

$$
f\left(x+1, y+\frac{1}{2}\right)<0
$$

Midpoint algorithm $(0 \leq m \leq 1)$
$y \leftarrow y_{0}$
for $x=x_{0}, \ldots, x_{1}$ do
$\operatorname{draw}(x, y)$

$$
\text { if } f\left(x+1, y+\frac{1}{2}\right)<0 \text { then }
$$

$$
y \leftarrow y+1
$$

Efficiency: incremental update

- Compute initial $f(x, y)$
- Compute next by updating previous
- Update with one addition

$$
f(x, y)=\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+\left(x_{0} y_{1}-x_{1} y_{0}\right)
$$

Efficiency: incremental update

- Compute initial $f(x, y)$
- Compute next by updating previous
- Update with one addition

$$
\begin{aligned}
f(x, y) & =\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+\left(x_{0} y_{1}-x_{1} y_{0}\right) \\
f(x+1, y) & =f(x, y)+\left(y_{0}-y_{1}\right)
\end{aligned}
$$

Efficiency: incremental update

- Compute initial $f(x, y)$
- Compute next by updating previous
- Update with one addition

$$
\begin{aligned}
f(x, y) & =\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+\left(x_{0} y_{1}-x_{1} y_{0}\right) \\
f(x+1, y) & =f(x, y)+\left(y_{0}-y_{1}\right) \\
f(x+1, y+1) & =f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
\end{aligned}
$$

Efficiency: incremental update

$$
\begin{aligned}
& y \leftarrow y_{0} \\
& d \leftarrow f\left(x_{0}+1, y_{0}+\frac{1}{2}\right) \\
& \text { for } x=x_{0}, \ldots, x_{1} \text { do } \\
& \quad \text { draw }(x, y) \\
& \quad \text { if } d<0 \text { then } \\
& \quad y \leftarrow y+1 \\
& \quad d \leftarrow d+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
\end{aligned}
$$

else

$$
d \leftarrow d+\left(y_{0}-y_{1}\right)
$$

Other cases: $0 \leq m \leq 1$

Other cases: $-1 \leq m \leq 0$

Other cases: $|m|>1$

