
CS130 - LAB 3 - Debugging

Today’s lab will be about debugging programs using GDB and valgrind. If you are using

Linux/MacOS, GDB should be already installed. You can install valgrind on Ubuntu using

$ sudo apt get install valgrind and on MacOS using brew install valgrind. If you are

using a Windows machine, you will need to use of the machines with Linux in the

department to finish this lab. You can connect remotely to the machines in the lab if

you want to test this at home.

GDB

GDB helps you understand the execution of the program by allowing you to run a code

line by line and check variable values on-the-fly. Say we have the following program

called factorial in a file factorial.cpp:

1. float factorial(int n) {

2. float i = n;

3. for (n--; n >= 0; --n)

4. i *= n;

5. return i;

6. }

To run GDB or valgrind, we need to compile factorial with debug symbols and we can do

this by passing -g to the GCC compiler. After compiled

To run factorial with GDB, we type gdb factorial.

This will start GDB and load the debug symbols. We can run the program by typing run.

If the program crashes, it will stop at the part of the code where the problem

happened. To see the code where the problem happened, you can type list. We can also

see what the value of the variables are by typing print <variable>. For instance, if

we want to see the value of n in line 4. of factorial, we can type print n.

Before you run the program, you can also add breakpoints that will make the program

stop at a specific line of code before continuing. To do this, you can type breakpoint

<filename>:<line of code>. For instance, if we want to check the values n in

factorial.cpp, we can type breakpoint factorial.cpp:4.

A quick guide to GDB can be found at:

https://web.eecs.umich.edu/~sugih/pointers/summary.html

Valgrind

Valgrind helps us understand if there are memory violations in our program (among other

things). For instance, the following program may not crash but we know it is wrong

because we should not be accessing a memory position at index 2 of the array.

1. int main() {

2. int *array = new int[2];

3. array[0] = 0;

4. array[1] = 0;

5. array[2] = 0; // what will happen here?

6. return array[2];

7. }

We can run valgrind by typing valgrind <program call>. Assuming the above code binary
is called test, then we can do valgrind test. Here is the output of valgrind when we
run test:

==16319== Memcheck, a memory error detector

==16319== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==16319== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

==16319== Command: ./test

==16319==

==16319== Invalid write of size 4

==16319== at 0x1086B0: main (main.cpp:5)

==16319== Address 0x5b82c88 is 0 bytes after a block of size 8 alloc'd

==16319== at 0x4C3089F: operator new[](unsigned long) (in

/usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)

==16319== by 0x10868B: main (main.cpp:2)

==16319==

==16319== Invalid read of size 4

==16319== at 0x1086BA: main (main.cpp:6)

==16319== Address 0x5b82c88 is 0 bytes after a block of size 8 alloc'd

==16319== at 0x4C3089F: operator new[](unsigned long) (in

/usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)

==16319== by 0x10868B: main (main.cpp:2)

==16319==

==16319==

==16319== HEAP SUMMARY:

==16319== in use at exit: 8 bytes in 1 blocks

==16319== total heap usage: 2 allocs, 1 frees, 72,712 bytes allocated

==16319==

==16319== LEAK SUMMARY:

==16319== definitely lost: 8 bytes in 1 blocks
==16319== indirectly lost: 0 bytes in 0 blocks

==16319== possibly lost: 0 bytes in 0 blocks

==16319== still reachable: 0 bytes in 0 blocks

==16319== suppressed: 0 bytes in 0 blocks

==16319== Rerun with --leak-check=full to see details of leaked memory

==16319==

==16319== For counts of detected and suppressed errors, rerun with: -v

==16319== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)

The first problem is an invalid write of size 4 (bytes) on line 5. The second is a read

of the same memory address. Note also the last line in bold which is saying that we

allocated 8 bytes but we never free that memory, which is also a problem.

CS130 - LAB 3 - Debugging Problems

Name: SID:

The codes we will be working with can be found on iLearn.

1. Run valgrind on prog-1.
a. What type of error do we get and why?

b. How prog-1 can be changed so we don’t get this error anymore?

2. Run valgrind on prog-2.
a. What type of error do we get and why?

b. How prog-1 can be changed so we don’t get this error anymore?

3. Run gdb on prog-3.
a. The program should stop with segmentation fault exception. Type list to

see the region where the program stopped. In which line of code is the

program crashing?

b. Use the command print <statement> with the variables that are being
accessed on the line where the program is crashing. Why the program crashed

in this case and how we can fix it?

4. Run valgrind on prog-4.
a. What type of error do we get and why?

b. How prog-1 can be changed so we don’t get this error anymore?

5. Run gdb on prog-5 and follow the steps below.
a. The program should stop with an segmentation fault exception. In which line

of code is the program crashing?

b. Why the program crashed in this case and how we can fix it? (you may want

to see the list and node structures in the source code for this)

c. Compile and run the program again using gdb. The program should crash
again. Try using list and print to figure out why the program is crashing
and briefly explain your reasoning. What changes need to be made in the

code to fix this problem?

d. Compile and run the program again using valgrind. The program should
display an error. Why do we get this error and how we can fix it?

6. Using gdb and valgrind (use the best for each situation), briefly describe all
problems in prog-6 and propose fixes for each one of the problems.

