
CS130 - LAB 2

Name: SID:

The general algorithm for ray tracing is as follows:

for each pixel (i,j):
Compute the ‘world position’ of the pixel

Create a ray from the camera position to the world position of the pixel

Cast the ray and evaluate the color of the pixel:

Find the closest object that intersects with the ray.

Get the pixel color by using Shader_Surface function of a shader.

If there are no objects, use background_shader
else, use the intersected object material_shader

Please find the appropriate files in the skeleton code and fill the blanks

below.

1. World_Position function in Camera class, returns the world position of a

given pixel (ivec2 pixel_index).

a. World_Position function is implemented in camera.cpp starting from line

___________.

2. Cell_Center function in Camera class, returns the screen position of a

given pixel, ivec2 pixel_index.

a. Cell_Center function is implemented in camera.h starting from line #

___________.

3. Locate where the loop that iterates through all pixels are located.

a. The loop is located in _____________________ function in

render_world.cpp

4. Cast_Ray function in render_world.cpp returns the color of the pixel

using the shader of the closest object it intersects with. Find the

function in render_world.cpp and fill below.

a. Cast_Ray function is implemented in render_world.cpp starting from line

___________.

b. Cast_Ray function is called in_____________________ function in

render_world.cpp.

5. Closest_Intersection function will be used in Cast_Ray function to find

the closest object that intersects with the ray and (if any) provide it’s

intersection information in a object of type Hit.

a. Closest_Intersection function is implemented in render_world.cpp

starting from line #_______.

b. The output object hit should store the following information:

 __.

c. Any intersection with distance <= small_t should be __________________.

6. Intersection function is a function of the Object class (object.h) which

is a base class for scene objects such as plane and sphere. This function

is overloaded by these classes and should return true if the object

intersects with the ray and return an hit object the closest intersection.

7. Vectors. Given that u and v are vec3 objects storing 3D vectors, fill
the missing cells in the table below with code or it’s explanation.

Code Description

u[0]=5
v[2]=6

Sets , x component of u ,to 5

Sets , z component of v, to 6

vec3 m = u+v

vec3 p=u[0]*v

double k=dot(u,v)

 Create a vec3 c that stores the cross product

of u and v

 returns magnitude (length) of u

u.normalized() returns u/|u|

(the unit vector in u’s direction)

 Create a vec3 k, such that

cout << u << endl; prints vector u (values separated with commas)

https://www.codecogs.com/eqnedit.php?latex=u_x%0
https://www.codecogs.com/eqnedit.php?latex=v_z%0
https://www.codecogs.com/eqnedit.php?latex=k%3D%5Cfrac%7B(u%20%5Ccdot%20v)%20u%7D%7B%7Cu%7C%5E2%7D%0

GETTING STARTED WITH THE RAY TRACER PROJECT

Compile: scons
Run test N (00-29): ./ray_tracer -i ./tests/N.txt
Compare test N (00-29): ./ray_tracer -i ./tests/N.txt -s ./tests/N.png
Run grading script: ./grading-script.py .

Functions to implement for this lab:

❏ camera.cpp: World_Position
❏ render_world.cpp: Render_Pixel (only ray construction)
❏ render_world.cpp: Closest_Intersection
❏ render_world.cpp: Cast_Ray
❏ sphere.cpp: Intersection: returns intersection of ray and the sphere.
❏ plane.cpp: Intersection: returns intersection of ray and the plane.

Important Classes:

render_world.h/cpp:

class Render_World : //Stores the rendering parameters such as
std :: vector < Object *> objects //list of objects in the scene
std :: vector < Light *> lights ; //list of lights in the scene
Camera camera ; //the camera object (see below)

camera.h/cpp:

class Camera: // Stores the camera parameters, such as the camera position
 // screen horizontal and vertical vectors etc.

object.h:

class Hit : // Stores the ray object intersection data such as the distance
// from the endpoint to the intersection point with the object.

ray.h:

class Ray // stores ray parameters: end_point, direction
vec3 Point(double t) ; // returns the point on the ray at distance t,
 // i.e. (end_point + direction * t)

sphere.h/cpp:

class Sphere // Stores sphere parameters (center, radius)

plane.h/cpp:

class Plane // Stores plane parameters (x0, normal)

World position of a pixel (camera.cpp):

The world position of a pixel can be calculated by the following formula:

: horizontal_vector, : vertical_vector,

and : film_position (bottom left corner of the screen)

: of type vec2 can be obtained by Cell_Center(pixel_index) //see camera.h

Constructing the ray (Render_Pixel function):

end_point: camera position (from camera class)
direction: a unit vector from the camera position to the world position of
the pixel.

 vec3 class has normalized() function that returns the normalized vector;
 e.g. (v1-v2).normalized()

Closest_Intersection:

The pseudo code is:

Set min_t to a large value (google std numeric_limits)
For each object* in objects:

 use object->Intersect to get the hit with the object

 If hit is the closest so far and larger than small_t
 (i.e. with smallest t, that is larger than small_t)

 then store the hit as the closest hit
return closest hit

Cast_Ray:

Get the closest hit with an object using Closest_Intersection
If there is an intersection:

Set color using the object Shade_Surface function which calculates and
returns the color of the ray/object intersection point.

Shade_Surface receives as parameters: ray, intersection point, normal at
the intersection point and recursion_depth. You can get the intersection

point using the ray object and the normal using the object pointer
inside the hit object.

Else (if there is no intersection)
Use background_shader of the render_world class. The background shader
is a flat_shader so you can use any 3d vector as parameters.

Credits: Muzaffer Akbay (Winter/17), Revision: Cassio (Fall/18)

https://www.codecogs.com/eqnedit.php?latex=F_p%2Bu%5C%20C_x%20%2B%20v%20%5C%20%20C_y%0
https://www.codecogs.com/eqnedit.php?latex=u%0
https://www.codecogs.com/eqnedit.php?latex=v%0
https://www.codecogs.com/eqnedit.php?latex=F_p%0
https://www.codecogs.com/eqnedit.php?latex=C%0

