

CS130 : Computer Graphics

Curves

Tamar Shinar
Computer Science & Engineering

UC Riverside

Design considerations

*|ocal control of shape
*design each segment
independently

esmoothness and continuity

*ability to evaluate derivatives

estability
*small change in input leads
to small change in output

eecase of rendering

P(v)

|

Approximate

Design considerations

*|ocal control of shape
*design each segment
independently

esmoothness and continuity

*ability to evaluate derivatives

estability
*small change in input leads
to small change in output

eecase of rendering \ .
A= . approximate
olv) / ‘; out of a
| T " number of
/ wood strips

Approximate

Design considerations

*|ocal control of shape
*design each segment
independently

esmoothness and continuity

*ability to evaluate derivatives

estability
*small change in input leads
to small change in output

eecase of rendering \ .

P ERE I . approximate

/) out of a

4 & ,

Pl - / qv) N s i " number of

join points .
/ wood strips

or knots

Approximate

What is a curve?

intuitive idea:
draw with a pen
set of points the pen traces

may be 2D, like on paper
or 3D, space curve

What is a curve?

or be
closed

may have
endpoints

extend
infinitely

How do we specify a curve!

How do we specify a curve!

Implicit
(2D) f(x,y) =0
test if (x,y) is on the curve

How do we specify a curve!

Implicit
(2D) f(x,y) =0
test if (x,y) is on the curve

f(x,y) =0
Oon curve

How do we specify a curve!

Implicit
(2D) f(x,y) =0
test if (x,y) is on the curve

. 1xy)=0
off curve

How do we specify a curve!

Implicit
(2D) f(x,y) =0
test if (x,y) is on the curve

Parametric
(2D) (xy) = (1)
(3D) (xy,z) = ()
map free parameter t
to points on the curve

How do we specify a curve!

t =10

Implicit
(2D) f(x,y) =0
test if (x,y) is on the curve

Parametric
(2D) (xy) = (1)
(3D) (xy,z) = ()
map free parameter t
to points on the curve

How do we specify a curve!

Implicit
(2D) f(x,y) =0
test if (x,y) is on the curve

Parametric

(2D) (x,y) = (1)
(3D) (x,y,z) = (1)

)
map free parameter t g
to points on the curve Q

5

Procedural 9]

e.qg., fractals,

subdivision schemes Fractal: Koch Curve

How do we specify a curve!

Implicit
(2D) f(x,y) =0
test if (x,y) is on the curve

Parametric
(2D) (xy) = (1) ’
(3D) (xy,z) = ()
map free parameter t
to points on the curve

Procedural
e.qg., fractals,
subdivision schemes Bezier Curve

A curve may have multiple
representations

A curve may have multiple
representations

Implicit
f(x,y) =x2+vy2-1=0

A curve may have multiple
representations

t = pif2

Parametric
(x,y) = f(t) = (cos t, sin t)

A curve may have multiple

representations
t = pi/2
Parametric
(x,y) = f(t) = (cos t, sin t),
tin [0,2pi)

Same curve (set of points),
but different mathematical representation!

A curve may have multiple

representations
t = pi/2
Parametric
(x,y) = f(t) = (cos t, sin t),
tin [0,2pi)

We will focus on parametric representations

Parametric Form

Parametric Form

Tangent Vector %‘\

Parameterization, re-parameterization

10

—
1

Parameterization, re-parameterization

fa(s)

trace out
the curve
more quickly

s =0.5

Parameterization, re-parameterization

Parameterization, re-parameterization

Parameterization, re-parameterization

t=0 t=10
I I N I A
I O
|\
- \\\ N I I S (N B
ot
S = S0 S = St

Natural parameterization

note: points

uneven ?/’\.

t=10

Natural parameterization

pen moves at a constant velocity:

evenly spaced points /‘/\.

10

Natural parameterization

pen moves at a constant velocity:

evenly spaced points /"\.

s=0

£(s)

also called
arc-length
parameterization

10

Natural parameterization

pen moves at a constant velocity:

evenly spaced points /"\.

+ s =10
s=0
f(s)
also callea 5
arc-length df (s) _ .
parameterization ds

piecewise parametric representation

sometimes easy
to find a parametric
representation

e.qg., circle, line segment

\

piecewise parametric representation

IN other cases, not obvious

piecewise parametric representation

strategy: break into simpler pieces

piecewise parametric representation

strategy: break into simpler pieces

switch between functions that represent pieces:

f(u) = | £2(2u—1) u>0.5

piecewise parametric representation

strategy: break into simpler pieces

switch between functions that represent pieces:

£ (2u) u < 0.5 map the inputs to

fH(2u—1) uw>0.5 fi and fo
to be from 0 to 1

f(u) =<

Curve Properties

Local properties:
continuity
position
direction
curvature

Global properties (examples):
closed curve
curve crosses itself

Interpolating vs. non-interpolating

Continuity: stitching curve segments together

parametric
continuity

geometric
continuity

Interpolating vs. Approximating Curves

® P,
p,e P P, pe N
P, °p,
Interpolating Approximating

(non-interpolating)

Finding a Parametric
Representation

Polynomial Pieces

f(u) = ag + aju + agu® + -+ - + ayu”

Polynomial Pieces

coefficients n = degree

N/

f(u) = ap + aju + agu® + -+ - + ayu”

Polynomial Pieces

coefficients n = degree

N/

f(u) = ap + aju + agu® + -+ - + ayu”

“canonical form” (monomial basis)

Blending functions are more convenient
basis than monomial basis

Po P Ps
P,

® “canonical form” (monomial basis)

f(U) — 4 s NIV a2u2 agu3

® “geometric form” (blending functions)

f(u) = bo(u)po + b1(u)p1 + b2(u)p2 + b3(u)p3

Blending functions are more convenient
basis than monomial basis

f(u) = ag + a1u + asu® + azu’

Blending functions are more convenient
basis than monomial basis

Po

Ca=p P1
a=C"'p=Bp D2
P3

Blending functions are more convenient
basis than monomial basis

Po
Ca — p p _ p]_
a=C"'p=Bp D2
P3
f(u) = u'a= UT(BP) 1 Some

T _ examples
= (u B b(u) = p
()p () <whiteboard>

= b(u)' p \bz(w)/

Interpolating Polynomials

Interpolating polynomials

® Given n+| data points, can find a unique interpolating
polynomial of degree n

® Different methods:
® Vandermonde matrix
® |agrange interpolation

® Newton interpolation

higher order interpolating
polynomials are rarely used

overshoots

4

non-local effects
3 5 4th order (gray) to 5th order (black)

Piecewise Polynomial Curves

Cubics

f(U) — ag T aju + a2u2 -+ a3u3
e Allow up to C“ continuity at knots
® need 4 control points

® may be 4 points on the curve, combination of points
and derivatives, ...

® good smoothness and computational properties

Advantages of Cubics

e allow for C2 continuity (C1 often not
enough, more than C2 unnecessary)

* N piecewise cubics for n+3 points give
minimum curvature curve

* symmetry: position and derivatives can be
specified at beginning and end

* good tradeoff between numerical issues
and smoothness

We can get any 3 of 4 properties

I .piecewise cubic
2.curve interpolates control points
3 .curve has local control

4.curves has C2 continuity at knots

Natural Cubics

C2 continuity

n points -> n-1 cubic segments
control is non-local :(
ill-conditioned x(

properties |, 2,4 (piecewise cubic, curve interpolates
control points, curves has C2 continuity at knots)

Cubic Hermite Curves

CI continuity
specify both positions and derivatives

properties |, 2, 3 (piecewise cubic, curve interpolates
control points, curve has local control)

Cubic Hermite Curves

construct
curve with
C! continuity

Specify endpoints
and derivatives

y
A

p/(o% P (l)=q(0
p/(1) 1) = g0
p(1) 50 p(1) =4q0)

Hermite blending functions

02 =
[Wikimedia Commons]

Example: keynote curve tool

Cubic Bezier Curves

Cubic Bezier Curves

\f'ﬂ)=3(p3-p2)

Cubic Bezier Curve Examples

Cubic Bezier blending functions

<whiteboard>

Cubic Bezier blending functions
]

- bo(u) = (1 —)
08 F b1(u) = 3u(l — u)
- ba(u) = 3u*(1 — u)
06 bs(u) = u’
04 F
02 [‘
0 / N I I T N Y T N B L |

O 0.2 04 0.6 0.8]

Bezier Curves Degrees 2-6

)
X
)
R
=

~
D
D
D
)

Bernstein Polynomials

* The blending functions are a special
case of the Bernstein polynomials

d' k d—k
u) =] -
bia (1) k!_(d—k)!u (1-u)
* These polynomials give the blending

polynomials for any degree Bezier form
All roots at 0 and 1
For any degree they all sum to 1
They are all between 0 and 1 inside (0,1)

66

Bezier Curve Properties
AT
o)

curve lies in the convex hull
of the data

variation diminishing

symmetry Po

P; "
affine invariant 2\ M
efficient evaluation and 7

subdivision

Joining Cubic Bezier Curves

Joining Cubic Bezier Curves

e for Cl continuity, the
vectors must line up and
@ - be the same length
e for G| continuity, the
vectors need only line up

Evaluating p(u) geometrically

Evaluating p(u) geometrically

De Casteljau algorithm

Bezier subdivision

AB

Bezier subdivision

AB

Bezier subdivision

CD

@0
divid and conguer approach can be
used for efficient rendering

Recursive Subdivision

® work with convex hull, does not require evaluating the
polynomial

® Bezier curves most convenient -- other curves can be
transformed to Bezier

® same approach for surfaces

® New points created by subdivision
O Old points discarded after subdivision
@ Old points retained after subdivision

ing

ion for Render

IVIS

Recursive Subd

=7 \hv\lﬂl\lr =
(e

Cubic B-Splines

B-spline properties

epolynomials of degree d with (d-1) continuity
epreferred method for very smooth curves (C2
or higher)

B-spline properties

*C(d-1) continuity

*|ocal control - any point on curve depends on
d+1 control points

*bounded by convex hull

evariation diminishing property

Cubic B-Splines

Spline blending functions

1

bo(w) = <(1—w)?

1
bi(u) = 6(4 — 6u’ + 3u?)

b1 (u] b,(u)

1
bo(u) = 6(1 + 3u + 3u” — 3u°)

1
bs(u) = Eug

General Splines

® Defined recursively by Cox-de Boor recursion formula

1 it ¢, <t
0 otherwise

bj0(t) = {

t— 1,

b n(t) =
J’n(| Litn —1; Ljtnt1 — tjt1

iy

U Yk Uy Uk+2 U Up+3

Spline properties

P,

Basis functions Po

bfu+1) bofu) convexity

Surfaces

Parametric Surface

r = z(u,v) 4

y = y(u,v) *u =]

z = z(u,v) s *piu, V)
u=_0

V=]

Parametric Surface -
tangent plane

Bicubic Surface Patch

Bezier Surface Patch

=2 2 blwbi Py

Patch lies In
convex hull

Poo

Po3

