general rotations

Rotation about x, y, z axes

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \quad \text { X axis }} \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \quad \text { Y axis }} \\
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]}
\end{aligned} \quad \begin{aligned}
& \text { Z axis }
\end{aligned}
$$

Rotation about an arbitrary axis \mathbf{w} by θ radians

- complete orthonormal basis

$$
\mathbf{u}, \mathbf{v}, \mathbf{W}
$$

- rotation matrix (w -> z-axis)

$$
\begin{gathered}
R^{T}=\left(\begin{array}{c}
\mathbf{u}^{T} \\
\mathbf{v}^{T} \\
\mathbf{w}^{T}
\end{array}\right) \\
R=\left(\begin{array}{lll}
\mathbf{u} & \mathbf{v} & \mathbf{w}
\end{array}\right)
\end{gathered}
$$

- composite rotation

$$
R R_{z}(\theta) R^{T}
$$

Inverse of a rotation matrix

- complete orthonormal basis

$$
\mathbf{u}, \mathbf{v}, \mathbf{W}
$$

- R, R^{T} are rotation matrices

$$
R=\left(\begin{array}{lll}
\mathbf{u} & \mathbf{v} & \mathbf{w}
\end{array}\right)
$$

$$
R^{T}=\left(\begin{array}{c}
\mathbf{u}^{T} \\
\mathbf{v}^{T} \\
\mathbf{w}^{T}
\end{array}\right)
$$

- R, R^{T} are orthogonal matrices

$$
R R^{T}=R^{T} R=I
$$

Composite Transformations

Rotating about a fixed point

- basic rotation alone will rotate about origin but we want:

Composite Transformations

Rotating about a fixed point Move fixed point (px,py,pz) to origin Rotate by desired amount Move fixed point back to original position

$$
\mathbf{M}=\mathbf{T}(\mathrm{px}, \mathrm{py}, \mathrm{pz}) \mathbf{R} \mathbf{T}(-\mathrm{px},-\mathrm{py},-\mathrm{pz})
$$

