Name:

SID :

Lab 7 - Part 1: Bézier curves

In this lab, we will render an approximation of a parametric curve known as the Bézier.

Consider the parametric equation of a segment between two control points PO and P :
(1) $B(t)=(1-t) * P 0+t * P 1$

For n control points, we can recursively apply Eq. 1 to consecutive control points until we are left with only $B(t)$. For three control points:
(2) $B(t)=(1-t) *[(1-t) * P 0+t * P 1]$

$$
+t *[(1-t) * P 1+t * P 2]
$$

1. Given n control points, what is the degree of the polynomial equation for the Bezier curve?

In general, $B(t)$ for n points is given by:

$$
B(t)=\sum_{i=0}^{n-1}\binom{n-1}{i} t^{i}(1-t)^{n-1-i} P_{i}
$$

2. Since we may need the factorial, combination and binomial terms of $B(t)$ in this lab, complete the code to for these functions below.
```
float factorial(int n) {
```

\}
float combination (int n, int k) \{
\}
float binomial (int n, int $k, f l o a t ~ t) ~\{$
\}
3. Ok, let's practice a problem.

Quadratic Bezier curve. This problem will guide you through deriving the quadratic Bezier blending functions.

Given three control points p_{0}, p_{1}, and p_{2}, a quadratic Bezier curve

$$
\begin{equation*}
f(t)=a_{0}+a_{1} t+a_{2} t^{2} \tag{1}
\end{equation*}
$$

can be determined from the following conditions:
condition $1 f(0)=p_{0}$
condition $2 f(1)=p_{2}$
condition $3 f^{\prime}(0)=2\left(p_{1}-p_{0}\right)$

1. Fill in the right hand side of the equation below by differentiating equation (1).

$$
\begin{equation*}
f^{\prime}(t)= \tag{2}
\end{equation*}
$$

2. Use conditions 1-3 and equations (1) and (2) to fill in the following linear system:

$$
(\quad)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)=(\quad)\left(\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2}
\end{array}\right)
$$

3. Given that

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
a & b & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-a & -b & 1
\end{array}\right)
$$

fill in the following linear system:

$$
\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)=(\quad)\left(\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2}
\end{array}\right)
$$

4. Use the above work to write down the quadratic Bezier blending functions $b_{o}(t), b_{1}(t), b_{2}(t)$, such that

$$
f(t)=b_{o}(t) p_{0}+b_{1}(t) p_{1}+b_{2}(t) p_{2}
$$

(hint: recall that $f(t)=\mathbf{t}^{T} \mathbf{a}$, where $\mathbf{t}=\left(1, t, t^{2}\right)^{T}$ and $\mathbf{a}=\left(a_{0}, a_{1}, a_{2}\right)^{T}$.)

Lab 8 - Part 1: Coding
Download the skeleton code from iLearn and modify main. cpp as follows:
\square Define a global vector to store the control points.
\square Push back the mouse click coordinates into the vector in the function GL_mouse.
\square Write the code for the factorial, combination and binomial.
\square Draw line segments between points along the Bezier curve in GL_render () .
\square You can use GL_LINE_STRIP to draw line segments between consecutive points.
\square You can iterate t between 0 and 1 in steps of 0.01 .

Optional: Rather than using the general equation for the Bézier curve to write your program, can write a program where you recursively apply Eq. 1 to consecutive points until get $B(t) ?$

