
Name:       SID:   LAB Section: 

Lab 6 - Part 1: Pixels and Triangle Rasterization 

 

1. Coordinate space conversions. In OpenGL, the coordinates of a vertex in 

model-view space can be converted to NPC coordinates, after multiplying it with 

model-view and projection matrices and dividing it with w. The NPC coordinate 

frame can be visualized as a unit box covering the coordinates from -1 to 1 in 

all 3 dimensions. For this exercise assume a 2D space, where the NPC 

coordinates, x and y, are in the range of [-1,1].  

 

In the rasterization process, the color of each pixel is decided. The pixel 

space can be represented by a rectangular grid with size: width x height. In 

this process, the vertices should be first converted to NPC space and then to 

pixel coordinates in order to find out which pixels lies within a given shape. 

 

An overlapping drawing of NPC space and pixel (screen) space is given below. 

Answer the questions by using this figure as a reference.  

 

 

  



Assume a 2D point,P, lies at NPC coordinates (x,y), where x,y is in range [-1,1] 

 

a. Find the column index, i, and row index, j, of the cell (pixel) that contains 
the point P. 

 

(EQ.1)   i = ______________________________________(in terms of width and x) 

 

(EQ.2)   j = ______________________________________(in terms of height and y) 

 

b. Find the coordinate, (fi,fj), of P in the pixel space, where fi is the      
x-coordinate and fj is the y-coordinate of P in pixel space. This is 

different from above as fi and fj are floating point numbers, since the pixel 

space is a continuous space with the same size as the pixel grid, and the 

origin of the coordinate frame is the center of the pixel (cell) with index 

(0,0). 

 

(EQ.3)   fi =______________________________________(in terms of width and x) 

 

 

(EQ.4)   fj =______________________________________(in terms of height and y)  

  

Assume a pixel, I, with pixel index (i,j), where i is the column index and j is 

the row index of I. 

 

c. Find the NPC space coordinates, (x,y), of the pixel I. Where x, and y lies 
within range [0,1]. 

 

(EQ.5)   x = ______________________________________(in terms of width and i) 

 

(EQ.6)   y = ______________________________________(in terms of height and j) 

 

 

2. Barycentric coordinates. The (signed) area of triangles can be used to 

calculate the barycentric coordinate of a point. Given the point P and triangle 

ABC fill the equations and write the barycentric coordinates using areas of 

triangles. 

 

(EQ.7) 

𝜶 =  
𝒂𝒓𝒆𝒂(𝑷𝑩𝑪)

𝒂𝒓𝒆𝒂(𝑨𝑩𝑪)
 

 

𝜷 =______________ 
 

 

𝜸 = ________________ 
 

There is an easy equation you can use to calculate the area of a triangle 

using only the coordinates of each vertex. It will be very useful since it will 

give you negative values if the triangle has a certain orientation. For a 

triable with vertices a,b,c, the equation is given by 

  

(EQ.8)    area(abc)=0.5 (ax by − ay bx + bx cy − by cx + cx ay − cy ax). 
  

Since we are interested only in the ratio between areas, you can drop 0.5 and 

reorganize the equation as 

  

(EQ.9)    area(abc)=ax (by−cy) + ay (cx−bx) + (bx cy−by cx). 
 

NOTE: The order of vertices is important as it might result in change of sign.  



Name:       SID:   LAB Section: 

Lab 6 - Part 2: OpenGL Functions 
 

1. Read the assignment page, and try to understand the general outline and the 

requirements 

 

2. Briefly, in this assignment you will be implementing some of the OpenGL 

commands. The program in the skeleton code, reads a sequence of commands from 

an input file, e.g. ./tests/00.txt, and calls the functions, that you will 

implement in the minigl.{h,cpp} followed by a mglReadPixels call. For 

example, glBegin(GL_QUADS) will invoke mglBegin(MGL_QUADS).  

 

You are required to implement a subset of OpenGL functions, by reading the 

OpenGL documentation and following the provided tips. 

 

3. Before beginning implementation, read the OpenGL documentation and describe 

what each function below is doing and what the inputs to these functions 

refer to. 

 

The index page of the documentation can be found in the following address:  

(google ‘opengl 2.0 reference’) 

https://www.khronos.org/registry/OpenGL-Refpages/es2.0/ 

 

 

Note: In this assignment, your functions should match the OpenGL documentation 

EXACTLY!  

 

 

Important:  

MathML markup language is used in the reference pages. Some browsers, 

such as Google Chrome, do not support this feature. 

 

Please use a browser that supports MathML (such as Firefox) 

especially when viewing matrices in the docs. 

 

 

 

a. glBegin: 

 

 

input: 

 

 

 

 

b. glEnd: 

 

 

 

 

https://www.khronos.org/registry/OpenGL-Refpages/es2.0/


 

 

c. glVertex2: 

 

 

inputs: 

 

 

d. glVertex3: 

 

 

inputs: 

 

 

e. glColor: 

 

 

inputs: 

 

 

 

f. glReadPixels: 

 

 

inputs: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Important:  
In the rest of the assignment, please do not forget to read the 

documentation of a function before implementing it. 

 

  



Here are 2 example OpenGL command sequences that draw a cube and a pyramid. Go 

through the code and try to get an understanding of the commands. 

 

Render a color-cube consisting of 6 

quads with different colors 

Render a pyramid consists of 4 

triangles 

// Begin drawing the color cube with 6 quads 

glBegin(GL_QUADS); 

// Top face (y = 1.0f) 

   glColor3f(0.0f, 1.0f, 0.0f);  // Set color to Green 

   glVertex3f( 1.0f, 1.0f, -1.0f); // Add vertex 

   glVertex3f(-1.0f, 1.0f, -1.0f); // Add vertex 

   glVertex3f(-1.0f, 1.0f,  1.0f); // Add vertex 

   glVertex3f( 1.0f, 1.0f,  1.0f); // Add vertex 

   // Bottom face (y = -1.0f) 

   glColor3f(1.0f, 0.5f, 0.0f);  // Set color to Orange 

   glVertex3f( 1.0f, -1.0f,  1.0f); // Add vertex 

   glVertex3f(-1.0f, -1.0f,  1.0f); // Add vertex 

   glVertex3f(-1.0f, -1.0f, -1.0f); // Add vertex 

   glVertex3f( 1.0f, -1.0f, -1.0f); // Add vertex 

   // Front face  (z = 1.0f) 

   glColor3f(1.0f, 0.0f, 0.0f);  // Set color to Red 

   glVertex3f( 1.0f,  1.0f, 1.0f); // Add vertex 

   glVertex3f(-1.0f,  1.0f, 1.0f); // Add vertex 

   glVertex3f(-1.0f, -1.0f, 1.0f); // Add vertex 

   glVertex3f( 1.0f, -1.0f, 1.0f); // Add vertex 

   // Back face (z = -1.0f) 

   glColor3f(1.0f, 1.0f, 0.0f);  // Set color to Yellow 

   glVertex3f( 1.0f, -1.0f, -1.0f); // Add vertex 

   glVertex3f(-1.0f, -1.0f, -1.0f); // Add vertex 

   glVertex3f(-1.0f,  1.0f, -1.0f); // Add vertex 

   glVertex3f( 1.0f,  1.0f, -1.0f); // Add vertex 

   // Left face (x = -1.0f) 

   glColor3f(0.0f, 0.0f, 1.0f);  // Set color to Blue 

   glVertex3f(-1.0f,  1.0f,  1.0f); // Add vertex 

   glVertex3f(-1.0f,  1.0f, -1.0f); // Add vertex 

   glVertex3f(-1.0f, -1.0f, -1.0f); // Add vertex 

   glVertex3f(-1.0f, -1.0f,  1.0f); // Add vertex 

   // Right face (x = 1.0f) 

   glColor3f(1.0f, 0.0f, 1.0f);  // Magenta 

   glVertex3f(1.0f,  1.0f, -1.0f); // Add vertex 

   glVertex3f(1.0f,  1.0f,  1.0f); // Add vertex 

   glVertex3f(1.0f, -1.0f,  1.0f); // Add vertex 

   glVertex3f(1.0f, -1.0f, -1.0f); // Add vertex 

glEnd();  // End of drawing color-cube 

// Begin drawing the pyramid with 4 triangles 

glBegin(GL_TRIANGLES);         

   // Front 

   glColor3f(1.0f, 0.0f, 0.0f);  // Red 

   glVertex3f( 0.0f, 1.0f, 0.0f); // Add vertex 

   glColor3f(0.0f, 1.0f, 0.0f);  // Green 

   glVertex3f(-1.0f, -1.0f, 1.0f); // Add vertex 

   glColor3f(0.0f, 0.0f, 1.0f);  // Blue 

   glVertex3f(1.0f, -1.0f, 1.0f); // Add vertex 

   // Right 

   glColor3f(1.0f, 0.0f, 0.0f);  // Red 

   glVertex3f(0.0f, 1.0f, 0.0f); // Add vertex 

   glColor3f(0.0f, 0.0f, 1.0f);  // Blue 

   glVertex3f(1.0f, -1.0f, 1.0f); // Add vertex 

   glColor3f(0.0f, 1.0f, 0.0f);  // Green 

   glVertex3f(1.0f, -1.0f, -1.0f); // Add vertex 

    // Back 

   glColor3f(1.0f, 0.0f, 0.0f);  // Red 

   glVertex3f(0.0f, 1.0f, 0.0f); // Add vertex 

   glColor3f(0.0f, 1.0f, 0.0f);  // Green 

   glVertex3f(1.0f, -1.0f, -1.0f); // Add vertex 

   glColor3f(0.0f, 0.0f, 1.0f);  // Blue 

   glVertex3f(-1.0f, -1.0f, -1.0f); // Add vertex 

   // Left 

   glColor3f(1.0f,0.0f,0.0f);    // Red 

   glVertex3f( 0.0f, 1.0f, 0.0f); // Add vertex 

   glColor3f(0.0f,0.0f,1.0f);    // Blue 

   glVertex3f(-1.0f,-1.0f,-1.0f); // Add vertex 

   glColor3f(0.0f,1.0f,0.0f);    // Green 

   glVertex3f(-1.0f,-1.0f, 1.0f); // Add vertex 

glEnd();   // Done drawing the pyramid 

 

 

 

NOTE: Feel free to copy these codes to a text file and use it as an input file 

for the program 

  



  



Name:       SID:   LAB Section: 

Lab 6 - Part 3: Starting Assignment 2 
 

Download the skeleton code from the assignment webpage. 

Compile and run with a few test files (with -g option) to get a feel to the 

program. 

 

Extract Code: tar -xzf proj-gl-files.tar.gz 

Compile: scons 

Run: ./minigl -g -i ./tests/N.txt   where N=00,01,...28 

Grade Preview Tests: ./grading-script.sh ./tests 
 

Follow the guidelines below and start implementing the functions.  

 

Note: All the implementation should be done in minigl.cpp; you do not need 

to change any file other than minigl.cpp in this assignment. 

 

Don’t forget to compile after every step! 

You won’t see any output till you finish everything in this lab. 

 

You may not be allowed to leave the lab until you pass the first 6 tests, 

for full credit. 

 

1. mglColor sets the current/active color.  

 

a. Create a variable that stores a color as a 3d vector 

 

___________________________________________________________________ 

 

b. Copy the code above to minigl.cpp (as a global variable). Find and implement 

the mglColor function in minigl.cpp 

 

2. glVertex2 and glVertex3 adds vertices to a vertex list. Therefore, we would 

need a Vertex structure and a variable that stores a list of vertices. 

 

a. Create a structure that stores a 4d position and a color. 

 

struct Vertex 

{ 

_______________________________________________ 

 

_______________________________________________ 

 

}; 

 

b. Create a variable that stores a list of vertices. 

 

_______________________________________________ 



 

c. Copy the code above to minigl.cpp. You may add a constructor for vertex class 

or use initializer lists to construct it when needed. 

 

d. Locate mglVertex3 function in minigl.cpp. In this function, you will need to 

create a vertex with a 4d position (x,y,z,w) and a color. Use the current color 

variable (1.a) for the color and the input parameters to create the 4d vector 

setting its w to 1, e.g. vec4(x,y,z,1). Add the created vertex to the vertex 

list (2.b). 

Note: Later on in the assignment, you will have to use modelview and projection 

matrices. Make sure to multiply the vertex with the (current) modelview and 

projection matrices in the correct order before adding it to the list. 

 

e. A 2D vector can be implemented as a 3d vector with z=0. Locate and implement 

the mglVertex2 function. Hint: you may utilize the mglVertex3 function. 

 

 

3. glBegin starts a list of vertices for primitives. The type of the primitives 

is given as an input to this function. In this assignment, you will need to 

implement only triangles and quads indicated by MGL_TRIANGLES and MGL_QUADS 

respectively.  

 

a. Create a variable that keeps the current type of primitive (see typedefs in 

minigl.h and the glBegin parameter to decide the ‘type’ of the variable). 

 

_______________________________________________ 

b. Copy the code above to minigl.cpp (as a global variable). 

 

c. Locate the mglBegin function in minigl.cpp, and set the current primitive 

type according to the input. 

 

4. glEnd marks the end of acceptance of vertices for the current primitive(s). 

The collected vertices in-between the glBegin and glEnd are converted into a 

list of primitives (triangles). Given N vertices, if the current primitive mode 

is MGL_TRIANGLES, a triangle should be created for each triplet of vertices and 

added to a list of triangles. 

 

a. Create a structure that stores the 3 vertices of a triangle, e.g. A,B and C. 

 

struct Triangle 

{ 

_______________________________________________ 

  

};  

 

b. Create a variable that stores a list of triangles. 

 

_______________________________________________ 

 

  



MGL_TRIANGLES MGL_QUADS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: Vertex decomposition for different primitives. 

 

c. Copy the code above to minigl.cpp (globally). Locate mglEnd and begin 

implementing the function: if the current primitive type (3.a) is MGL_TRIANGLES, 

then iterate through the vertex list (3.b) and create a triangle from each 

triplet of vertices, and add to the triangle list (4.b). 

 

d. A quad can be represented with 2 triangles. See the figure below for an 

example. In mglEnd function, if the current primitive type is MGL_QUADS, iterate 

through the vertex list (3.b) and create two triangles for each quad, from each 

quadruplet of vertices, and add to the triangle list.  

 

 

 
 

Figure: A quad can be represented with 2 triangles.  

Vertex i 

Vertex i+1 

Vertex i+2 Vertex i+3 

Triangle 

#1 

Triangle 

#2 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

… 

… 

… 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

Triangle 1 

Triangle 2 

Triangle N/3 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

… 

… 

… 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

glVertex3(…) 

Quad 1 

Quad 2 

Quad N/4 



e. Make sure to clean the vertices list at the end of mglEnd function. 

 

5. glReadPixel function is used to set the color of each pixel in the OpenGL 

window. The inputs width and height specify the size of the window, and data is 

the pointer to the readily allocated output 1D output array, data. In 

mglReadPixel function, you will need to rasterize the triangles onto the pixels 

by setting each pixel’s color.  

 

The data array is a row-major ordered 1D storage for the color of the pixels. 

In order to set the color of a pixel. you need to convert the color from (float) 

[0,1] to (int) [0,255] range and use Make_Pixel function defined in minigl.h, 

that will convert it to 32-bit color representation. 

e.g. The following line of code set the color pixel (i,j) to red (1,0,0). 

  data[i+j*width] = Make_Pixel(255,0,0) //(0.4,0.4,0.4) x 255 = (102,102,102) 

To set the color to gray (0.4,0.4,0.4) =>  

  data[i+j*width] = Make_Pixel(102,102,102) //(0.4,0.4,0.4) x 255 = (102,102,102) 

 

a. In minigl.cpp, create a helper function, Rasterize_Triangle, that gets a 

Triangle, width, height, and data as its parameters and rasterizes the triangle 

on the screen by setting the colors in data: 

  void Rasterize_Triangle(const Triangle& tri, int width, int height, MGLpixel* data) 

 

In this function: 

 

- Calculate the pixel coordinates of the vertices of the triangle (EQ. 3,4) 

- For each pixel I=(i,j) in the screen, with size: width x height 

 

o Calculate the barycentric coordinate of I, by using it with the 

pixel coordinates of the triangle vertices (EQ. 7,9). 

Suggestion: Add another helper function that gets 3 points and 

returns the area, for a cleaner code. 

 

o Using barycentric coordinates, decide if the pixel is inside the 

triangle. If so, color the pixel  

(You may use the current color, color of the first pixel or white 

(255,255,255) for all the interior pixels for now.) 

Do not color with black if the pixel is outside as it might 

overwrite prior triangles. 

 

You can visit the class notes on triangle rasterization for further explanation 

and additional optimizations (such as iterating only on bounding boxes – use 

EQ.1,2 to do so). 

 

b. Locate mglReadPixels function and start implementing it.  

 

- Fill the whole pixel data with black using Make_Pixel(0,0,0) 



- For each triangle in the triangle list call the Rasterize_Triangle 

function to rasterize it on the ‘data’. 

- Clear the triangle list. 

 

6. glOrtho multiplies the current matrix with the orthographic matrix given in 

its documentation page:  

https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glOrtho.xml 

For the first checkpoint, you do not need to multiply it but rather set it.  

 

In addition to the vec class the skeleton code also includes a mat class for 

matrix storage and operations. 

 
 

Matrix Class and Ordering 
 

Basics: 

The matrix class (mat.h) stores an array of values (16 for mat4) in column major order (as in opengl 
matrices). 

• The matrix and vector classes provide the basic arithmetic operations such as multiplication  

• You can access the elements of vector by using [] operator. e.g. v[0] is the x-coordinate, v[1] is the 

y-coordinate, etc.  

• You can access the elements of matrix by [] operator. e.g. m[i,j] would access the element at ith row 

and jth column. (matrix is zero indexed). 

 Ordering and Initialization: 

The 4x4 matrix class (mat4) stores the values in column-major order, just like OpenGL matrices. When 
the matrix is created, the values are allocated but not initialized. use make_zero() function to initialize it to 
0. 

When initializing the matrix with brace-enclosed initializer lists, make sure you use the correct order. 

 

Tip: enter it like its transpose 

  

The code : 

      mat4 A={{a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15}}; 

would initialize matrix A as: 

 

𝐴 = [

𝑎0 𝑎4 𝑎8 𝑎12
𝑎1 𝑎5 𝑎9 𝑎13
𝑎2 𝑎6 𝑎10 𝑎14
𝑎3 𝑎7 𝑎11 𝑎15

] 

  

Warning: When using brace-enclosed initializer lists, make sure all ‘a’ values are MGLfloat, e.g., 

entering 1.0 as one of the values, would not work since it is a double, you can use 1.0f instead. 
 

 

  

https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glOrtho.xml


a. Create a 4x4 matrix (mat4) variable in minigl.cpp 

 

mat4 projection; 

 

b. In the mglOrtho function, set the projection matrix with the matrix provided 

in the documentation. 

 

c. In the mglVertex3/2 functions left-multiply the Vertex with the projection 

matrix before adding it to the vertex list. Note: This should be changed to 

projection x modelview x vertex in the upcoming checkpoints 

 

  



Notes for checkpoints 2 and onwards: 

 

For all of the matrix operations, please refer to the opengl documentation  

*In order to view matrices and equations properly, you should use firefox or a 

browser that supports MathML. 

 

Note: The matrices generated by your functions should match the 

opengl documentation EXACTLY! 

 

 

Here are brief descriptions and suggestions for some functions: 

 

 

mglMatrixMode: Sets the current matrix mode. Create a global variable that 

stores the current mode then set it in this function. 

  

mglFrustum: very similar to glOrtho, create the perspective projection matrix as 

in docs and multiply (or set for now) with the active matrix. Additionally, at 

the beginning of Rasterize_Triangle function, you will need to divide the x,y and 
z of each vertex with its w to find the NPC coordinates. 

 

mglColor: 

- Set the current color with the parameters of this function. 

- Modify mglReadPixel so that you use the color of the first vertex of a 

triangle in Make_Pixel rather than (255,255,255). Tip: Make sure that you 

convert each vertex color,(r,g,b), from [0,1] domain to [0,255] before 

using them in Make_Pixel. 

  

Matrix Stacks: 

 

First of all, if you do not feel familiar about matrix stacks in opengl, please 

read " Manipulating the Matrix Stacks" section of this guide: 

http://www.glprogramming.com/red/chapter03.html#name6 

• Before implementing any new function, you need to change the projection and 

modelview matrices to projection and modelview stacks. I suggest using 

std::vector for stacks, where back() function gives the top of the stack. 

• When declaring/initializing these stacks make sure they have 1 element/mat4 

in them. i.e. use an appropriate constructor. The values inside the initial 

matrices does not matter. 

• I also suggest adding a helper function that returns a reference to the top 

of the active stack (based on the current matrix mode); 

e.g. top_of_active_matrix_stack(). So that, we can avoid having if/else 

structures in matrix modifying functions. 

• Modify all the already-implemented functions that changes matrices such 

as mglFrustum, mglOrtho, mglLoadIdentity, etc., so that they work with the 

top of the active matrix stack. 

https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/
http://www.glprogramming.com/red/chapter03.html#name6%20.
http://www.glprogramming.com/red/chapter03.html#name6


• In mglVertex functions, we are still multiplying each vertex position with 

both projection and modelview matrices, but this time just using the top of 

the corresponding stack. Tip: the mat and vec classes provide multiplication 

operators. 

• Run tests and make sure you still pass tests 00-05. 

• mglPushMatrix, mglPopMatrix: do the push or pop operations on the active 

stack. Implementing these would not pass another test for now. Note: These 

are the only functions that should do the push and pop operations. 

  

mglScale, mglTranslate, mglRotate: 

• Follow the description in opengl documentation for each function. 

• This is up to you, but you can implement and use the mglMultMatrix and use 

the pointer to the head of your multiplier matrix by accessing it 

with &multiplier.values[0] 

Tips on mglRotate:  

1. you should normalize the (x,y,z) vector.  

2. The function uses degrees [0,360] as input, however cos and sin functions 

use radians. 

 

 

 

 

 

 

 

Further notes may be provided on Piazza...  


